Skip to main content Accessibility help
×
Home

Supramolecular Assemblies of Chromophores in LB Films and Related Media

  • Huijuan Chen, Catie Weiss Farahat, Mohammad S. Farahat, H. Cristina Geiger, Uwe W. Leinhos, Kangning Liang, Xuedong Song, Thomas L. Penner, Abraham Ulman, Jerry Perlstein, Kock-Yee Law and David G. Whitten...

Extract

Formation of aggregates has been observed as a general phenomenon for a wide variety of organic molecules, especially aromatic compounds and dyes. Aggregation is most commonly encountered in crystals or in thin films. However, it has been increasingly observed in microheterogenous media or in other situations where high local concentrations occur or where specific orientation is favored. Two limiting types of aggregation have been defined based on the orientation of transition dipoles and their absorption spectral characteristics. These are the “J” aggregate, in which head-to-tail arrangements of transitiondipole moments are characterized by a sharp, intense, red-shifted transition compared to the isolated (solvated) monomer, and the “H” aggregate, where head-to-head (card-pack) orientations are characterized by a blue shift of the prominent transition compared with the monomer. Several treatments have been proposed to correlate the observed spectral shifts with the aggregate structure. For a number of compounds, the association of known x-ray-determined structures with spectral features has supported the theoretical predictions developed by Kasha and Hochstrasser or by Czikkely, Försterling, and Kuhn. The focus of the studies described here has been on aggregation occurring in Langmuir-Blodgett (LB) films and related media, such as bilayer vesicles, which are characterized by an assembly of molecules in an interfacial situation where a polar-nonpolar or water-hydrocarbon boundary should provide a strong organizing influence. In early cases where aggregates were encountered as prominent components of mixed LB films (even when relatively dilute mixtures were used), the phenomenon was usually dismissed as “microcrystallization,” which was considered an unavoidable nuisance and not really due to fundamental intermolecular interactions. More recent studies have shown that aggregation in these media is really a significant molecular phenomenon that shows dependence both on the specific molecules and the topology of the film-forming surfactant. Although some previous investigations have been carried out with different results for various substrates, we have embarked on a study to correlate aggregation behavior for a number of different chromophores incorporated into amphiphilic structures to obtain a general picture of the relative importance of different factors that can control aggregation phenomena.

Copyright

References

Hide All
1.Mukerjee, P. and Mysels, K.J., J. Am. Chem. Soc. 77 (1955) p. 2,937.
2.Miyoshi, N., Kiyoaki, H., Yokoyama, I., Tomita, G., and Fukuda, M., Photochem. Photobiol. 47 (1988) p. 685.
3.Sato, H., Kawasaki, M., Kasatani, K., Kusumoto, Y., Nakashima, N., and Yoshihara, K., Chem. Lett. (1980) p. 1,529.
4.Sato, H., Kawasaki, M., Kasatani, K., and Ban, T., Chem. Lett. (1982) p. 1,139.
5.Kusumoto, Y. and Sato, H., Chem. Phys. Lett. 68 (1979) p. 13.
6.Sato, H., Kusumoto, Y., Nakashima, N., and Yoshihara, K., Chem. Phys. Lett. 71 (1980) p. 326.
7.Baxendale, J.H. and Rodgers, M.A., Chem. Phys. Lett. 72 (1980) p. 424.
8.Baxendale, J.H. and Rodgers, M.A., J. Phys. Chem. 86 (1982) p. 4,906.
9.Law, K.Y., Photochem. Photobiol. 33 (1981) p. 799.
10. For examples of J-aggregation in homogenous solution see: Mason, S.F., Proc. Chem. Soc. 119 (1964).
11.Emerson, E.S., Conlin, M.A., Rosenoff, A.E., Norland, K.S., Rodriquez, H., Chin, D., and Bird, G.R., J. Phys. Chem. 71 (1967) p. 2,396.
12.Rosenoff, A.E., Norland, K.S., Ames, A.E., Walworth, V.K., and Bird, G.R., Photographr. Sci. Eng. 12 (1968) p. 185.
13.Bird, G.R., Norland, K.S., Rosenoff, A.E., and Michaud, H.B., Photographr. Sci. Eng. 12 (1968) p. 196.
14.Kasha, M., El-Bayoumi, M.A., Rhodes, W., J. Chim. Phys. 58 (1961) p. 916.
15.Kasha, M., Radial Res. 20 (1963) p. 55.
16.Hochstrasser, R.M. and Kasha, M., Photochem. Photobiol. 3 (1964) p. 317.
17.Czikkely, V., Försterling, H.D., and Kuhn, H., Chem. Phys. Lett. 6 (1970) p. 207.
18.Czikkely, V., Försterling, H.D., and Kuhn, H., Chem. Phys. Lett. 6 (1970) p. 11.
19.Farnum, D.G., Neuman, M.A., Suggs, W.T., J. Cryst. Mol. Struct. 4 (1974) p. 199.
20.Wingard, R.E., IEEE Trans. Ind. Appl. (1982) p. 1,251.
21.Tristani-Kendra, M. and Eckhardt, C.J., J. Chem. Phys. 81 (1984) p. 1,160.
22.Schick, G.A., Schreiman, I.C., Wagner, R.W., Lindsey, J.S., and Bocian, D.F., J. Am. Chem. Soc. III (1989) p. 1,344.
23.Nagata, T., Osuka, A., and Maruyama, K., J. Am. Chem. Soc. 112 (1990) p. 3,054.
24.Osuka, A. and Maruyama, K., J. Am. Chem. Soc. 110 (1988) p. 4,454.
25.Maruyama, K., J. Chem. Soc.; Chem. Commun. 638 (1990).
26.Anderson, H.L., Inorg. Chem. 33 (1994) p. 972.
27.Fuhrlop, J.H., Wasser, P., Riesner, D., and Mauzerall, D., J. Am. Chem. Soc. 94 (1972) p. 7,996.
28.Zachariasse, K.A. and Whitten, D.G., Chem. Phys. Lett. 22 (1973) p. 527.
29.Wasielewski, M.R., Niemczyk, M.P., and Sveck, W.A., Tetrahedron Lett. 23 (1982) p. 3,215.
30.Chang, C.K., in Inorganic Compounds with Unusual Properties II, edited by King, R.B. (Advanced Series in Chemistry, American Chemical Society, Washington DC, 1979) p. 162.
31.Chang, C.K., J. Heterocycl. Chem. 14 (1977) p. 1,285.
32.Schmehl, R.H., Shaw, G., and Whitten, D.G., Chem. Phys. Lett. 58 (1978) p. 549.
33.Cox, G.S., PhD thesis, University of North Carolina at Chapel Hill, 1982.
34.Barber, D.C., Freitag-Beeston, R.A., and Whitten, D.G., J. Phys. Chem. 95 (1991) p. 4,074.
35.Barber, D.C., PhD thesis, University of Rochester, 1990.
36.Benesi, H.A. and Hildebrand, H.H., J. Am. Chem. Soc. 71 (1949) p. 2,703.
37.Law, K.Y., Chem. Rev. 93 (1993) p. 449.
38.Buncel, E., McKerrow, A., and Kazmaier, P.M., J. Chem. Soc., Chem. Commun. (1992) p. 1,242.
39.Das, S., Thanulingam, T.L., Thomas, K.G., Kamat, P.V., and George, M.V., J. Phys. Chem. 97 (1993) p. 13,620.
40.Chen, H., Herkstroeter, W.G., Perlstein, J., Law, K.Y., and Whitten, D.G., J. Phys. Chem. 98 (1994) p. 5,138.
41.Das, S., Thomas, K.G., George, M.V., and Kamat, P.V., J. Chem. Soc.; Faraday Trans. 88 (1992) p. 3,419.
42.Law, K.Y. and Chen, C.C., J. Phys. Chem. 93 (1989) p. 2,533.
43.Bernstein, J. and Goldstein, E., Mol. Cryst. Liq. Cryst. 164 (1988) p. 213.
44.Law, K.Y., J. Phys. Chem. 92 (1988) p. 4,226.
45.Mooney, W.F. III, Brown, P.E., Russell, J.C., Costa, S.B., Pederson, L.G., and Whitten, D.G., J. Am. Chem. Soc. 106 (1984) p. 5,659.
46.Mooney, W.F. III and Whitten, D.G., J. Am. Chem. Soc. 108 (1986) p. 5,712.
47.Whitten, D.G., Acc. Chem. Res. 26 (1993) p. 502.
48.Spooner, S.P. and Whitten, D.G., J. Am. Chem. Soc. 116 (1994) p. 1,240.
49.Furman, I., Geiger, H.C., Whitten, D.G., Penner, T.L., and Ulman, A., Langmuir 10 (1994) p. 837.
50.Kasha, M., in Spectroscopy of the Excited State, edited by DiBartolo, B. (Plenum Press, New York, 1976).
51.Evans, C.E. and Bohn, P.W., J. Am. Chem. Soc. 115 (1993) p. 3,306.
52.Spooner, S.P. and Whitten, D.G., Proc. SPTE-Int. Soc. Opt. Eng. 82 (1991) p. 1,436.
53.Smithrud, D.B., Sanford, E.M., Chao, I., Ferguson, S.B., Carcanague, D.R., Evanseck, J.D., Houk, K.N., and Diederich, F., Pure Appl. Chem. 12 (1990) p. 2,227.
54.Stauffer, D.A., Barrans, R.E. Jr., and Dougherty, D.A., J. Org. Chem. 55 (1990) p. 2,762.
55.Dewey, T.D., Wilson, P.S., and Turner, D.H., J. Am. Chem. Soc. 100 (1978) p. 4,550.
56.Song, X., Geiger, H.C., Furman, I., and Whitten, D.G., J. Am. Chem. Soc. 116 (1994) p. 4,103.
57.Farahat, C. Weiss, Song, X., and Geiger, H.C., unpublished results.
58.Perlstein, J., J. Am. Chem. Soc. 116 (1994) p. 455.
59.Song, X., Geiger, H.C., Leinhos, U., Perlstein, J., and Whitten, D.G., J. Am. Chem. Soc. 116 (1994) p. 10,340.
60.Hunter, C.A. and Saunders, J.K.M., J. Am. Chem. Soc. 112 (1990) p. 5,525.
61.Jorgenson, W.L. and Severance, D.L., J. Am. Chem. Soc. 112 (1990) p. 4,768.
62.Cozzi, F., Cinquini, M., Annuziata, R., and Siegel, J.S., J. Am. Chem. Soc. 115 (1993) p. 5,330.

Supramolecular Assemblies of Chromophores in LB Films and Related Media

  • Huijuan Chen, Catie Weiss Farahat, Mohammad S. Farahat, H. Cristina Geiger, Uwe W. Leinhos, Kangning Liang, Xuedong Song, Thomas L. Penner, Abraham Ulman, Jerry Perlstein, Kock-Yee Law and David G. Whitten...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed