Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T14:35:40.028Z Has data issue: false hasContentIssue false

Structure of High Tc Oxide Superconductors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Our understanding of the superconducting mechanism in the newly discovered oxide superconductors is closely connected with a detailed knowledge of the structural properties displayed by these materials. Moreover, it is important to explore possible connections between structural and superconducting properties and to establish general structural principles which can guide our search for new compounds.

We present here a survey of the structures of the recently discovered oxide superconductors. The common feature of these structures (with the exception of cubic Ba1-x Kx BiO3-y) is the presence of one or more planes of copper atoms with four strongly bonded oxygen atom neighbors in a square planar arrangement at a distance of approximately 1.90 Å (“CuO2 planes”). In some structures these planes occur in groups, with the individual planes inside a group being separated by one Y or Ca layer and the groups being intercalated by a variable number of LaO, BaO, CuO, TIO and/or BiO layers. (The intercalated CuO layer is crystallographically distinct from the “CuO2 plane”). A natural model for superconductivity which arises from these structures is that the conductivity occurs predominantly in the Cu02 planes, while the other (intercalated) layers provide in some fashion carriers and/or the coupling mechanism necessary for the superconductivity.

Type
High Tc Superconductors
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R., Rupp, L.W. Jr., White, A.E., Short, K., Peck, W.F., and Kometani, T., Nature 333 (1988) p. 814.CrossRefGoogle Scholar
2.Hinks, D.G., Dabrowski, B., Jorgensen, J.D., Mitchell, A.W., Richards, D.R., Pei, S., and Shi, D., Nature 333 (1988) p. 836.CrossRefGoogle Scholar
3. See Uchida, S., Kitazawa, K., and Tanaka, S., Phase Transitions 8 (1987) p. 95, or B. Batlogg, Physica B 126 (1984) p. 275 and the references cited therein.CrossRefGoogle Scholar
4.Bednorz, J.G. and Müller, K.A., Z. Phys. B 64 (1968) p. 189.CrossRefGoogle Scholar
5.Takagi, H., Uchida, S., Kitazawa, K., and Tanaka, S., Jpn. J. Appl. Phys. 26 (1987) p. L123.CrossRefGoogle Scholar
6.Jorgensen, J.D., Schüttler, H-B., Hinks, D.G., Capone, D.W. II, Zhang, K., Brodsky, M.B., and Scalapino, D.J., Phys. Rev. Lett. 58 (1987) p. 1024.CrossRefGoogle Scholar
7.Flemming, R.M., Batlogg, B., Cava, R.J., and Rietman, E.A., Phys. Rev. B 35 (1987) p. 7191.CrossRefGoogle Scholar
8. See Jorgensen, J.D., Jpn. J. Appl. Phys. 26 (Supplement 26-3) (1987) p. 2017 for a review of the relevant literature.CrossRefGoogle Scholar
9.Beno, M.A., Soderholm, L., Capone, D.W. II, Hinks, D.G., Jorgensen, J.D., Grace, J.D., Schuller, I.K., Segre, C.U., and Zhang, K., Appl. Phys. Lett. 51 (1987) p. 57; J.E. Greedan, A. O'Reilly, and D.V. Stanger, Phys. Rev. B 35 (1987) p. 8770; J.J. Capponi, C. Chaillout, A.W. Hewat, P. Lejay, M. Tholence, and R. Tournier, Europhys. Lett. 3 (1987) p. 1301.CrossRefGoogle Scholar
10.Xiao, G., Cieplak, M.Z., Musser, D., Garvin, A., Strietz, F.H., Chien, C.L., Rhyne, J.J., and Gotaas, J.A., Nature 332 (1988) p. 238.CrossRefGoogle Scholar
11.Dunlap, B.D., Slaski, M., Hinks, D.G., Soderholm, L., Beno, M.A., Zhang, K., Segre, C.U., Crabtree, G.W., Kwok, W.K., Malik, S.K., Schuller, I.K., Jorgensen, J.D., and Sungalia, Z., J. Magn. Magn. Mater. 68 (1987)p. L139; J.W. Lynn, W-H. Li, Q. Li, H.C. Ku, H.D. Yang, and R.N. Shelton, Phys. Rev. B 36 (1987) p. 2374.CrossRefGoogle Scholar
12.Soderholm, L., Zhang, K., Hinks, D.G., Beno, M.A., Jorgensen, J.D., Segre, C.U., and Schuller, I.K., Nature 328 (1987) p. 604.CrossRefGoogle Scholar
13.Schuller, I.K., Hinks, D.G., Beno, M.A., Capone, D.W. II, Soderholm, L., Locquet, J-P., Bruynseraede, Y., Segre, C.U., and Zhang, K., Solid State Commun. 63 (1987) p. 385.CrossRefGoogle Scholar
14.Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36 (1987) p. 3608.CrossRefGoogle Scholar
15.Johnston, D.C, Jacobsen, A.J., Newsam, J.M., Lewandowski, J.T., Goshorn, D.P., Xie, D., and Yelon, W.B., in Chemistry of High-Temperature Superconductors, edited by Nelson, D.L., Whittingham, M.S., and George, T.F. (American Chemical Society, Washington, DC, 1987) p. 136; R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak, and D.|Werder, Phys. Rev. B 36 (1987) p. 5719; J.D. Jorgensen, B.W. Veal, W.K. Kwok, G.W. Crabtree, A. Umezawa, L.J. Nowicki, and A.P. Paulikas, Phys. Rev. B 36 (1987) p. 5731; E. Takayama-Muromachi, Y. Uchida, M. Ishii, T. Tanaka, and K. Kato, Jpn. J. Appl. Phys. 26 (1987) p. L1156; J.D. Jorgensen, H. Shaked, D.G. Hinks, B. Dabrowski, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, W.K. Kwok, L.H. Nunez, and H. Claus, Physica C 153-155 (1988) p. 578.CrossRefGoogle Scholar
16.Cava, R.J.et al., Physica C 153–155 (1988) p. 560.CrossRefGoogle Scholar
17.Tokura, Y., Torrance, J.B., Huang, T.C., and Nazzal, A.I., Phys. Rev. B 38 (1988) p. 7156.CrossRefGoogle Scholar
18.Jorgensen, J.D., Hinks, D.G., Shaked, H., Dabrowski, B., Veal, B.W.; Paulikas, A.P., Nowicki, L.J., Crabtree, G.W., Kwok, W.K., Umezawa, A., Nunez, L.H., and Dunlap, B.D., Physica B (in press).Google Scholar
19.Segre, C.U., Dabrowski, B., Hinks, D.G., Zhang, K., Jorgensen, J.D., Beno, M.A., and Schuller, I.K., Nature 329 (1987) p. 227.CrossRefGoogle Scholar
20.Mitzi, D.B., Feffer, P.T., Newsam, J.M., Webb, D.J., Klavins, P., Jacobson, A.J., and Kapitulnik, A., Phys. Rev. B 38 (1988) p. 6667.CrossRefGoogle Scholar
21.Parkin, S.S.P., Lee, V.Y., Nazzal, A.I., Savoy, R., Beyers, R., and Placa, S.J. La, Phys. Rev. Lett. 61 (1988) p. 750.CrossRefGoogle Scholar
22.Morosin, B., Ginley, D.S., Hlava, P.F., Carr, M.J., Baughman, R.J., Schirber, J.E., Venturini, E.L., and Kwak, J.F., Physica C 152 (1988) p. 413.CrossRefGoogle Scholar
23.Hazen, R.M., Finger, L.W., Angel, R.J., Prewitt, C.T., Ross, N.L., Hadidiacos, C.G., Heaney, P.J., Veblen, D.R., Sheng, Z.Z., Ali, A. Eli, and Herman, N., Phys. Rev. Lett. 60 (1988) p. 1657.CrossRefGoogle Scholar
24.Zandbergen, H.W., Huang, Y.K., Menken, M.J.V.; Li, J.N., Kadowaki, K., Menovski, A.A., van Tendeloo, G., and Amelinckx, S., Nature 332 (1988) p. 620.CrossRefGoogle Scholar
25.Subramanian, M.A., Torardi, C.C., Calabrese, J.C., Gopalakrishnan, J., Morrissey, K.J., Askew, T.R., Flippen, R.B., Chowdhry, U., and Sleight, A.W., Science 239 (1988) p. 1015.CrossRefGoogle Scholar
26.Sunshine, S.A., Siegrist, T., Schneemeyer, L.F., Murphy, D.W., Cava, R.J., Batlogg, B., van Dover, R.B., Flemming, R.M., Glarum, S.H., Nakahara, S., Farrow, R., Krajewski, J.J., Zahurak, S.M., Waszczak, J.V., Marshall, J.H., Marsh, P., Rupp, L.W. Jr., and Peck, W.F., Phys. Rev. B 38 (1988) p. 893.CrossRefGoogle Scholar
27.Torardi, C.C., Subramanian, M.A., Calabrese, J.C., Gopalakrishnan, J., McCarron, E.M., Morrissey, K.J., Askew, T.R., Flippen, R.B., Chowdhry, U., and Sleight, A.W., Phys. Rev. B 38 (1988) p. 225.CrossRefGoogle Scholar
28.Subramanian, M.A., Calabrese, J.C., Torardi, C.C., Gopalakrishnan, J., Askew, T.R., Flippen, R.B., Morrissey, K.J., Chowdhry, U., and Sleight, A.W., Nature 332 (1988) p. 420.CrossRefGoogle Scholar
29.Torardi, C.C., Subramanian, M.A., Calabrese, J.C., Gopalakrishnan, J., Morrissey, K.J., Askew, T.R., Flippen, R.B., Chowdhry, U., and Sleight, A.W., Science 240 (1988) p. 631.CrossRefGoogle Scholar
30.Bordet, P., Capponi, J.J., Chaillout, C., Chenavas, J., Hewat, A.W., Hewat, E.A., Hodeau, J.L., Marezio, M., Tholence, J.L., and Tranqui, D., Physica C 153–155 (1988) p. 623; P. Bordet, J.J. Capponi, C. Chaillout, J. Chenavas, A.W. Hewat, E.A. Hewat, J.L. Hodeau, M. Marezio, J.L. Tholence, and D. Tranqui, Physica C 156 (1988) p. 189.CrossRefGoogle Scholar
31.Hewat, A.W., Bordet, P., Capponi, J.J., Chaillout, C., Chenavas, J., Godinho, M., Hewat, E.A., Hodeau, J.L., and Marezio, M., Physica C 156 (1988) p. 369.CrossRefGoogle Scholar
32.Hewat, A.W., Hewat, E.A., Brynestad, J., Mook, H.A., and Specht, E.D., Physica C 152 (1988) p. 438.CrossRefGoogle Scholar
33.Cox, D.E., Torardi, C.C., Subramanian, M.A., Gopalakrishnan, J., and Sleight, A.W., Phys. Rev. B 38 (1988) p. 6624.CrossRefGoogle Scholar
34.Chu, P., Hor, P.H., May, R.L., Wang, Y.Q., Gao, L., Huang, Z.G., Bechtold, J., Forster, K., Chu, C.W., Phys. Rev. Lett. 58 (1987) p. 1891.Google Scholar
35.Dmowski, W., Toby, B.H., Egami, T., Subramanian, M.A., Gopalakrishnan, J., and Sleight, A.W., Phys. Rev. Lett. 61 (1988)p. 2608.Google Scholar