Skip to main content Accessibility help
×
Home

Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics

  • Dragan Damjanovic (a1) and George A. Rossetti (a2)

Abstract

Piezoelectric ceramics generate strain through the intrinsic piezoelectric effect, the motion of ferroelectric domain walls, or through field-induced phase transitions. The enhanced piezoelectric properties observed in morphotropic solid solutions arise from several distinct, but interrelated, mechanisms associated with the near degeneration of the energy surface from cubic to spherical symmetry. The phenomenological theory of ferroelectricity is used to explain the thermodynamic origins of strain generation mechanisms in these solid solutions. The displacement of ferroelectric domain walls is an extrinsic contribution to the piezoelectric response that can be controlled by modifying the host material with small concentrations of dopants. The concept of “hardening” is introduced; hardening can be useful in applications where piezoelectric energy conversion and low energy loss are more important than large strain. The operative mechanisms of strain generation and energy conversion in technologically important lead-based and lead-free piezoelectric materials are summarized.

Copyright

References

Hide All
1.Jaffe, B., Cook, W.R., Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971).
2.Newnham, R.E., Properties of Materials (Oxford University Press, New York, 2005).
3.Budimir, M., Damjanovic, D., Setter, N., Phys. Rev. B Condens. Matter 73, 174106 (2006).
4.Klein, N., Hollenstein, E., Damjanovic, D., Trodahl, H.J., Setter, N., Kuball, M., J. Appl. Phys. 102, 014112 (2007).
5.Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M., Nature 432, 84 (2004).
6.Liu, W., Ren, X., Phys. Rev. Lett. 103, 257602 (2009).
7.Berlincourt, D., IEEE Trans. Sonics Ultrason. SU-13, 116 (1966).
8.Berlincourt, D., Krueger, H.H.A., J. Appl. Phys. 30, 1804 (1959).
9.Robels, U., Arlt, G., J. Appl. Phys. 73, 3454 (1993).
10.Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Li, J.F., Viehland, D., Phys. Rev. Lett. 91, 197601 (2003).
11.Wang, Y.L., He, Z.B., Damjanovic, D., Tagantsev, A.K., Deng, G.C., Setter, N., J. Appl. Phys. 110, 014101 (2011).
12.Noheda, B., Cox, D.E., Shirane, G., Gonzalo, J.A., Cross, L.E., Park, S.-E., Appl. Phys. Lett. 74, 2059 (1999).
13.Marutake, M., J. Phys. Soc. Jpn. 11, 807 (1956).
14.Pramanick, A., Damjanovic, D., Daniels, J.E., Nino, J.C., Jones, J.L., J. Am. Ceram. Soc. 94, 293 (2011).
15.Devonshire, A.F., Adv. Phys. 3, 85 (1954).
16.Rossetti, G.A. Jr., Khachaturyan, A.G., Akcay, G., Ni, Y., J. Appl. Phys. 103, 114113 (2008).
17.Benguigui, L., Solid State Commun. 11, 825 (1972).
18.Heitmann, A.A., Rossetti, G.A. Jr., Philos. Mag. 90, 71 (2010).
19.Carl, K., Härdtl, K.H., Phys. Status Solidi A 8, 87 (1971).
20.Heitmann, A.A., Rossetti, G.A. Jr., J. Am. Ceram. Soc. 97, 1661 (2014).
21.Haun, M.J., Furman, E., Jang, S.J., Cross, L.E., Ferroelectrics 99, 13 (1989).
22.Wersing, W., Heywang, W., Beige, H., Thomann, H., in Piezoelectricity: Evolution and Future of a Technology (Springer-Verlag, Berlin, 2008), p. 37.
23.Park, S.-E., Shrout, T.R., J. Appl. Phys. 82, 1804 (1997).
24.Eremkin, V., Smotrakov, V.G., Fesenko, E.G., Ferroelectrics 110, 137 (1990).
25.Isupov, V.A., Sov. Phys. Solid State 12, 1084 (1970).
26.Ari-Gur, P., Benguigui, L., Solid State Commun. 15, 1077 (1974).
27.Bellaiche, L., García, A., Vanderbilt, D., Phys. Rev. Lett. 84, 5427 (2000).
28.Fu, H., Cohen, R.E., Nature 403, 281 (2000).
29.Vanderbilt, D., Cohen, M.H., Phys. Rev. B Condens. Matter 63, 094108 (2001).
30.Khachaturyan, A.G., Philos. Mag. 90, 37 (2010).
31.Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti, G.A. Jr., Rödel, J., Appl. Phys. Rev. 4, 041305 (2017).
32.Damjanovic, D., J. Appl. Phys. 82, 1788 (1997).
33.Zheng, J., Takahashi, S., Yoshikawa, S., Uchino, K., J. Am. Ceram. Soc. 79, 3193 (1996).
34.Damjanovic, D., in The Science of Hysteresis, Bertotti, G., Mayergoyz, I., Eds. (Academic Press, Oxford, 2006), vol. 3, p. 337.
35.Chandrasekaran, A., Damjanovic, D., Setter, N., Marzari, N., Phys. Rev. B Condens. Matter 88, 214116 (2013).
36.Carl, K., Haerdtl, K.H., Ferroelectrics 17, 473 (1978).
37.Arlt, G., Neumann, H., Ferroelectrics 87, 109 (1988).
38.Daniels, J.E., Härdtl, K.H., Wernicke, R., Philips Tech. Rev. 38, 73 (1978).
39.Erhart, P., Albe, K., J. Appl. Phys. 102, 084111 (2007).
40.Aksel, E., Forrester, J.S., Foronda, H.M., Dittmer, R., Damjanovic, D., Jones, J.L., J. Appl. Phys. 112, 054111 (2012).
41.Prasertpalichat, S., Cann, D.P., J. Mater. Sci. 51, 476 (2015).
42.Ren, X.B., Nat. Mater. 3, 91 (2004).
43.Zhang, L.X., Ren, X., Phys. Rev. B Condens. Matter 71, 174108 (2005).
44.Jo, W., Granzow, T., Aulbach, E., Rodel, J., Damjanovic, D., J. Appl. Phys. 105, 094102 (2009).
45.Lee, H.J., Ural, S.O., Chen, L., Uchino, K., Zhang, S., Jones, J.L., J. Am. Ceram. Soc. 95, 3383 (2012).
46.Matsubara, M., Kikuta, K., Hirano, S., J. Appl. Phys. 97, 114105 (2005).
47.Sagalowicz, L., Chu, F., Duran Martin, P., and Damjanovic, D., J. Appl. Phys, 88, 7258 (2000).
48.Armiento, R., Kozinsky, B., Fornari, M., Ceder, G., Phys. Rev. B Condens. Matter 84, 014103 (2011).

Keywords

Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics

  • Dragan Damjanovic (a1) and George A. Rossetti (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed