Skip to main content Accessibility help
×
Home

Science and Technology of Shape-Memory Alloys: New Developments

  • Kazuhiro Otsuka and Tomoyuki Kakeshita

Abstract

The martensitic (also called displacive or diffusionless) transformation is a classical cooperative phenomenon in solids similar to ferromagnetism. Although the displacement of each atom is not large, the transformation results in a macroscopic change in shape, since all of the atoms move in the same direction in a domain or variant. As a result, unique properties arise, such as the shape-memory effect and superelasticity, whose characteristics are quite distinct from those of normal metals and alloys. Because of these unique properties, shape-memory alloys (SMAs) have been used as new functional materials for applications such as couplings, sensors, actuators, and antennas for cellular phones. In this issue of MRS Bulletin, we present an overview of recent progress in this field. In this introductory article, we discuss fundamental notions, such as the mechanism of the shape-memory effect, the martensitic transformation, and superelasticity, along with examples of applications and other important recent topics not treated in the following articles. It will be shown that progress in the science and technology of shape-memory alloys has been achieved by the side-by-side development of fundamentals and applications.

Copyright

References

Hide All
1.Chang, L.C. and Read, T.A., Trans. AIME 189 (1951) p. 47.
2.Buehler, W.J., Gilfrich, J.W., and Wiley, R.C., J. Appl. Phys. 34 (1963) p. 1475.
3.Nishiyama, Z., Martensitic Transformation (Academic Press, New York, 1978).
4.Christian, J.W., The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, 1965).
5.Wayman, C.M., Introduction to Crystallography of Martensitic Transformations (Macmillan, New York, 1964).
6.Warlimont, H. and Delaey, L., Prog. Mater. Sci. 18 (1974) p. 1.
7.Miyazaki, S., Ohmi, Y., Otsuka, K., and Suzuki, Y., J. Phys. (France) Colloque C4, Suppl. 12, Vol. 43 (1982) p. C4255.
8.Otsuka, K. and Wayman, C.M., eds., Shape Memory Materials (Cambridge University Press, Cambridge, 1998).
9.Harrison, J.D. and Hodgson, D.E., in Shape Memory Effects in Alloys, edited by Perkins, J. (Plenum Publishers, New York, 1975) p. 517.
10.Banks, R., in Shape Memory Effects in Alloys, edited by Perkins, J. (Plenum Publishers, New York, 1975) p. 537.
11.Wollants, P., de Bonte, M., Delaey, L., and Roos, J.R., Z. Metallkd. 70 (1979) p. 298.
12.Todoroki, T., Met. Technol. 54 (5) (1984) (in Japanese) p. 2.
13.Ohkata, H. and Tamura, H., in Materials for Smart Systems II, edited by George, E.P., Gotthardt, R., Otsuka, K., Trolier-McKinstry, S., and Wun-Fogle, M. (Mater. Res. Soc. Symp. Proc. 459, Pittsburgh, 1997) p. 345.
14.Uchino, K., in Shape Memory Materials, edited by Otsuka, K. and Wayman, C.M. (Cambridge University Press, Cambridge, 1998) p. 184.
15.Hosoda, Y., Fujie, M., and Kojima, Y., presented at the 1st Meeting of the Japan Robot Society, Tokyo, 1982, preprint, p. 213.
16.Ikuta, K., Tsukamoto, M., and Hirose, S., in Proc. IEEE Int. Conf. on Robotics and Automation (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1988) p. 427.
17.Rogers, C.A., Smart Materials, Structures, and Mathematical Issues (Technomic, Lancaster, PA, 1989).
18.Wei, Z.G., Sandstrom, R., and Miyazaki, S., J. Mater. Sci. 33 (1998) pp. 3743, 3763.
19.Schetky, L.McD., in Shape-Memory Materials and Phenomena—Fundamental Aspects and Applications, edited by Liu, C.T., Kunsmann, H., Otsuka, K., and Wuttig, M. (Mater. Res. Soc. Symp. Proc. 246, Pittsburgh, 1992) p. 299.
20.Marlinska, M., Balta, J.A., Michaud, V., Bidaux, J.-E., Manson, J.A., and Gotthardt, R., in Proc. ESOMAT-2000 (2002) in press.
21.Van Humbeeck, J., Stoiber, J., Delaey, L., and Gotthardt, R., Z. Metallkd. 86 (1995) p. 176.
22.Skorohod, V.V., Solonin, S.M., Martynova, I.F., and Klimenko, V.N., Sci. Sintering 22 (1990) p. 21.
23. Holemans' Jewelry Catalog 2001; Avenue Louise, 3–1050 Brussels, Belgium.
24.Otsuka, K., Sakamoto, H., and Shimizu, K., Acta Metall. 27 (1979) p. 585.
25.Horikawa, H., in Proc. SMST99 (Shape Memory and Superelastic Technologies), edited by Van Moorleghem, W., Besselink, P., and Aslandis, D. (Shape Memory and Superelastic Technologies Europe, Antwerp, 1999) p. 256.
26.Van Humbeeck, J., Mater. Sci. Eng., A 273–275 (1999) p. 134.
27.Schetky, L.McD., Mater. Sci. Forum 327–328 (2000) p. 9.
28.Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., eds., Binary Alloy Phase Diagrams, 2nd ed., Vol. 3 (ASM International, Materials Park, OH, 1990) p. 2874.
29.Honma, T., Matsumoto, T., Shugo, Y., and Nishida, M., Research Report of the Laboratory of Nuclear Science, Tohoku University 12 (Tohoku University, Sendai, Japan, 1979) p. 183.
30.Kudoh, Y., Tokonami, M., Miyazaki, S., and Otsuka, K., Acta Metall. 33 (1985) p. 2049.
31.Hara, T., Ohba, T., Okunishi, E., and Otsuka, K., Mater. Trans., JIM 38 (1997) p. 11.
32.Saburi, T., Komatsu, K., Nenno, S., and Watanabe, Y., J. Less-Common Met. 118 (1986) p. 217.
33.Nam, T.Y., Saburi, T., and Shimizu, K., Trans. JIM 31 (1990) p. 959.
34.Tadaki, T., Nakata, Y., Shimizu, K., and Otsuka, K., Mater. Trans., JIM 27 (1986) p. 731.
35.Saburi, T., Nenno, S., and Fukuda, T., J. Less-Common Met. 125 (1986) p. 157.
36.Hara, T., Ohba, T., and Otsuka, K., Mater. Trans., JIM 38 (1997) p. 277.
37.Nishida, M., Wayman, C.M., and Honma, T., Metall. Trans. A 17A (1986) p. 1505.
38.Horikawa, H., Tamura, H., Okamoto, Y., Hamanaka, H., and Miura, F., in Proc. Int. Meet. Adv. Mater., Vol. 9, edited by Otsuka, K. and Shimizu, K. (Materials Research Society, Pittsburgh, PA, 1989) p. 195.
39.Zhang, J., PhD thesis, University of Tsukuba, 2000.
40.Wechsler, M.S., Lieberman, D.S., and Read, T.A., Trans. AIME 197 (1953) p. 1503;
Lieberman, D.S., Wechsler, M.S., and Read, T.A., J. Appl. Phys. 26 (1955) p. 473.
41.Bowles, J.S. and Mackenzie, J.K., Acta Metall. 2 (1954) pp. 129, 138, 224.
42.Christian, J.W., J. Inst. Met. 84 (19551956) p. 386.
43.Otsuka, K., Mater. Sci. Forum 56–58 (1990) p. 393.
44.Nakanishi, N., Prog. Mater. Sci. 24 (1979) p. 143.
45.Planes, A. and Manosa, L., Solid-State Phys. 55 (2001) p. 159.
46.Shapiro, S.M., Larse, J.Z., Noda, Y., Moss, S.C., and Tanner, L.E., Phys. Rev. Lett. 57 (1986) p. 3199.
47.Zener, C., Phys. Rev. 71 (1947) p. 846.
48.Ren, X. and Otsuka, K., Scripta Mater. 38 (1998) p. 1669.
49.Tanner, L.E., Schryvers, D., and Shapiro, S.M., Mater. Sci. Eng., A A127 (1990) p. 205.
50.Lindgard, P.A. and Mouritsen, O.G., Phys. Rev. Lett. 57 (1986) p. 2458.
51.Krumhansl, J.A., Solid State Commun. 84 (1992) p. 251.
52.Barsch, G.R., Mater. Sci. Forum 327–328 (2000) p. 367.
53.Kakeshita, T., Kuroiwa, K., Shimizu, K., Ikeda, T., Yamagishi, A., and Date, M., Mater. Trans., JIM 34 (1993) p. 423.
54.Kakeshita, T., Saburi, T., and Shimizu, K., Mater. Sci. Eng., A 273–275 (1999) p. 21.
55.Abe, H., Ohshima, K., Suzuki, T., Hoshino, S., and Kakurai, K., Phys. Rev. B 49 (1994) p. 3739.
56.Otsuka, K., Ren, X., and Takeda, T., Scripta Mater. 45 (2001) p. 145.
57.Khachaturyan, A.G. and Shatalov, G.A., Sov. Phys. JETP 29 (1969) p. 557.
58.Wang, Y. and Khachaturyan, A.G., Acta Mater. 45 (1997) p. 759.
59.Jin, Y.M., Artemev, A., and Khachaturyan, A.G., Acta Mater. 49 (2001) p. 2309.
60.Suzuki, T., Shimono, M., and Takeno, S., Phys. Rev. Lett. 82 (1999) p. 1474.
61.Zhao, G.L. and Harmon, B.N., Phys. Rev. B 48 (1993) p. 2031.
62.Ye, Y.Y., Chan, C.T., and Ho, K.M., Phys. Rev. B 56 (1997) p. 3678.
63.Ohba, T., Emura, Y., and Otsuka, K., Mater. Trans., JIM 33 (1992) p. 29.

Keywords

Related content

Powered by UNSILO

Science and Technology of Shape-Memory Alloys: New Developments

  • Kazuhiro Otsuka and Tomoyuki Kakeshita

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.