Skip to main content Accessibility help

Rubber Stamping for Plastic Electronics and Fiber Optics

  • John A. Rogers


Microcontact printing (μCP) is a low-cost technique for rubber stamping that combines the high spatial resolution of sophisticated forms of photolithography with capabilities (e.g., single-step patterning of large areas and nonplanar surfaces) that are not present in other approaches. μCP will be useful for applications where established methods are ineffective. Two areas are particularly promising: (1) plastic electronics, where the chemical incompatibility of the constituent materials with common photoresists and developers can preclude the use of photolithography, and where μCP with rotating cylindrical stamps forms an excellent match with the type of reel-to-reel processing that is envisioned for these systems; and (2) new classes of optical-fiber and microcapillarybased devices, where μCP allows highresolution (∼0.2 μm) circuits, photomasks, and actuators to be printed directly on the highly curved surfaces of cylinders with submillimeter diameters. This article describes some highlights of our work in these and related areas.



Hide All
1.Kumar, A. and Whitesides, G.M., Appl. Phys. Lett. 63 (1993) p. 2002.
2.Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., and Drzaic, P., Proc. Natl. Acad. Sci. USA 98 (2001) p.4835.
3.Jackman, R.J., Wilbur, J.L., and Whitesides, G.M., Science 269 (1995) p.664.
4.Rogers, J.A., Jackman, R.J., and Whitesides, G.M., Adv. Mater. 9 (6) (1997) p.475.
5.Rogers, J.A., Bao, Z., and Makhija, A., Adv. Mater. 11 (1999) p.741.
6.Rogers, J.A., Bao, Z., Dodabalapur, A., and Makhija, A., IEEE Electron Device Lett. 21 (2000) p.100.
7.Rogers, J.A., Bao, Z., Dodabalapur, A., Schueller, O.J.A., and Whitesides, G.M., Synth. Met. 115 (2000) p.5; J.A. Rogers, J. Tate, W. Li, Z. Bao, and A. Dodabalapur, Isr. J. Chem. 40 (2000) p.139.
8.Xia, Y., Qin, D., and Whitesides, G.M., Adv. Mater. 8 (1996) p.1015.
9.Rogers, J.A., Jackman, R.J., Wagener, J.L., Vengsarkar, A.M., and Whitesides, G.M., Appl. Phys. Lett. 70 (1997) p.7.
10.Jackman, R.J., Rogers, J.A., and Whitesides, G.M., IEEE Trans. Magn. 33 (1997) p.2501; J.A. Rogers, R.J. Jackman, and G.M. Whitesides, JMEMS 6 (1997) p.184.
11.Rogers, J.A., Jackman, R.J., Whitesides, G.M., Olson, D.L., and Sweedler, J.V., Appl. Phys. Lett. 70 (1997) p.2464.
12.Rogers, J.A., Science 291 (2001) p.1502.
13.Comiskey, B., Albert, J.D., Yoshizawa, H., and Jacobson, J., Nature 394 (1998) p.253.
14.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E.P., Science 290 (2000) p.2123.
15.Gelinck, G.H., Geuns, T.C.T., and de Leeuw, D.M., Appl. Phys. Lett. 77 (2000) p.1487.
16.Tate, J., Rogers, J.A., Jones, C.D.W., Li, W., Bao, Z., Murphy, D.W., Slusher, R.E., Dodabalapur, A., Katz, H.E., and Lovinger, A.J., Langmuir 16 (2000) p.6054.
17.Xia, Y., Venkateswaran, N., Qin, D., Tien, J., and Whitesides, G.M., Langmuir 14 (1998) p.363.
18.Dubois, L.H. and Nuzzo, R.G., Annu. Rev. Phys. Chem. 43 (1992) p.437.
19.Xia, Y., Kim, E., and Whitesides, G.M., J. Electrochem. Soc. 143 (1996) p.1070.
20.Jackman, R.J., Brittain, S.T., Adams, A., Prentiss, M.G., and Whitesides, G.M., Science 280 (1998) p.2089.
21.Wu, H., Brittain, S.T., Anderson, J.R., Grzybowski, B., Whitesides, S., and Whitesides, G.M., J. Am. Chem. Soc. 122 (2000) p.12691.
22.Rogers, J.A., Eggleton, B.J., Jackman, R.J., Kowach, G.R., and Strasser, T.A., Opt. Lett. 24 (1999) p.1328.
23.Eggleton, B.J., Rogers, J.A., Westbrook, P.S., and Strasser, T.A., IEEE Photon. Techn. Lett. 11 (1999) p.854; J.A. Rogers, B.J. Eggleton, J.R. Pedrazzani, and T.A. Strasser, Appl. Phys. Lett. 74 (1999) p.3131.
24.Rogers, J.A., Kuo, P., Ahuja, A., Eggleton, B.J., and Jackman, R.J., Appl. Opt. 39 (2000) p.5109.
25.Salamon, T.R., Rogers, J.A., and Eggleton, B.J., Sens. Actuators, A (submitted for publication).
26.Rogers, J.A., Eggleton, B.J., and Strasser, T.A. (unpublished manuscript).
27.Nielsen, T., Eggleton, B.J., Rogers, J.A., Westbrook, P.S., and Strasser, T.A., IEEE Photon. Techn. Lett. 12 (2000) p.173.
28.Eggleton, B.J., Mikkelsen, B., Raybon, G., Ahuja, A., Rogers, J.A., Westbrook, P.S., Nielsen, T.N., Stulz, S., and Dreyer, K., IEEE Photon. Techn. Lett. 12 (2000) p.1022.
29.Xia, Y., Rogers, J.A., Paul, K.E., and Whitesides, G.M., Chem. Rev. 99 (7) (1999) p.1823.

Rubber Stamping for Plastic Electronics and Fiber Optics

  • John A. Rogers


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed