Skip to main content Accessibility help

Quantum Information

  • Luiz Davidovich


The following article is based on the plenary address by Luiz Davidovich (Federal University of Rio de Janeiro), presented on April 14, 2004, at the 2004 MRS Spring Meeting in San Francisco. The field of quantum information is a discipline that aims to investigate methods for characterizing, transmitting, storing, compressing, and computationally utilizing the information carried by quantum states. It owes its rapid development over the last few years to several factors: the ability, developed in several laboratories, to control and measure simple microscopic systems; the discovery of fast quantum algorithms; and the recognition that Moore's law will soon lead to the single-atom limit of elementary computing gates.Cryptography and quantum computing are among the main applications in the field.They rely on the subtle and fundamental properties of the quantum world: the unavoidable disturbance associated with measurement, the superposition principle, and the nonlocal properties of entangled states. Progress in this area is intimately connected to a deep understanding of quantum physics: recent achievements include the experimental demonstration of teleportation and detailed investigations of the role of the environment in the quantum–classical transition. This article reviews basic concepts and recent developments in the field of quantum information, emphasizing the close ties between fundamental research and possible applications.



Hide All
1.Schrödinger, E., Br. J. Philosophy Sci. 3 (1952) p. 109.
2. See, for instance, The Physics of Quantum Information, edited by Bouwmeester, D., Ekert, A., and Zeilinger, A. (Springer, Berlin, 2000).
3.Schrödinger, E., Naturw. 23 (1935) pp. 807, 823, and 844. English translation by J.D. Trimmer, Proc. Am. Phys. Soc. 124 (1980) p. 3235; A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47 (1935) p. 777.
4. For a detailed review of this field, see, for instance, Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000), or the lecture notes by J. Preskill, available at (accessed December 2004).
5.Shor, P.W., “Algorithms for quantum computation: Discrete logarithms and factoring,” Proc. 35nd Annu. Symp. on Foundations of Comp. Sci. (IEEE Computer Society Press, 1994) p. 124; P.W. Shor, SIAM J. Computing 26 (1997) p. 1484.
6.Grover, L., Phys. Rev. Lett. 79 (1997) p. 325.
7.Benioff, P., Phys. Rev. Lett. 48 (1982) p. 1581.
8.Feynman, R.P., Int. J. of Theor. Phys. 21 (1982) p. 467; Optics News 11 (1985) p. 11.
9.Deutsch, D., Proc. R. Soc. London, Ser. A 400 (1985) p. 97.
10.Wootters, W.K. and Zurek, W.H., Nature 299 (1982) p. 802.
11.Bennett, C.H. and Brassard, G., “Quantum cryptography: Public key distribution and coin tossing,” in Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing (1984) p. 175.
12. For a review, see Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H., Rev. Mod. Phys. 74 (2002) p. 145.
13.Poppe, A., Fedrizzi, A., Ursin, R., Böhm, H.R., Lörunser, T., Maurhardt, O., Peev, M., Suda, M., Kurtsiefer, C., Weinfurter, H., Jennewein, T., and Zeilinger, A., Opt. Express 12 (2004) p. 3865.
14. id Quantique SA home page,; MagiQ Technologies home page,; NEC Corp. home page,; Toshiba Research Europe Ltd. home page (accessed December 2004).
15.Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., and Wootters, W., Phys. Rev. Lett. 70 (1993) p. 1895.
16.Davidovich, L., Zagury, N., Brune, M., Raimond, J.M., and Haroche, S., Phys. Rev. A 50 (1994) p. R895.
17. For reviews, see Berman, P., Ed., Cavity Quantum Electrodynamics (Academic Press, New York, 1994).
18.Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A., Nature 390 (1997) p. 575; D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, Phys. Rev. Lett. 80 (1998) p. 1121; A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, and E.S. Polzik, Science 282 (1998) p. 706; M.A. Nielsen, E. Knill, and R. Laflamme, Nature 396 (1998) p. 52; I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421 (2003) p. 509; M. Riebe, H. Häffner, C.F. Roos, W. Hänsel, J. Benhelm, G.P.T. Lancaster, T.W. Körber, C. Becher, F. Schmidt-Kaler, D.F.V. James, and R. Blatt, Nature 429 (2004) p. 734; M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D.J. Wineland, Nature 429 (2004) p. 737; R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, Nature 430 (2004) p. 849.
19.DiVincenzo, D.P., Phys. Rev. A 51 (1995) p. 1015; A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys. Rev. A 52 (1995) p. 3457.
20.DiVincenzo, D.P., Fortschritte der Physik 48 (9–11) (2000) p. 771.
21.Cirac, J.I. and Zoller, P., Phys. Rev. Lett. 74 (1995) p. 4091.
22.Loss, D. and DiVincenzo, D.P., Phys. Rev. A 57 (1998) p. 120; A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83 (1999) p. 4204.
23.Averin, D.V., J. Low Temp. Phys. 118 (2000) p. 781; Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, Nature 398 (1999) p. 786; J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, and S. Lloyd, Science 285 (1999) p. 1036; I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, and J.E. Mooij, Science 299 (2003) p. 1869; Y. Makhlin, G. Schön, and A. Shnirman, Nature 398 (1999) p. 305; Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73 (2001) p. 357.
24.Gershenfeld, N.A. and Chuang, I.L., Science 275 (1997) 350; L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, and I.L. Chuang, Nature 414 (2001) p. 883.
25.Kane, B.E., Nature 393 (1998) p. 133.
26.Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., and Zoller, P., Phys. Rev. Lett. 81 (1998) p. 3108; I.H. Deutsch, G.K. Brennen, and P.S. Jessen, Fortschritte der Physik 48 (2000) p. 925; M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, Nature 415 (2002) p. 39.
27.Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., and Blatt, R., Nature 422 (2003) p. 408; D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D.J. Wineland, Nature 422 (2003) p. 412.
28.Shor, P.W., Phys. Rev. A 52 (1995) p. R2493; A.M. Steane, Phys. Rev. Lett. 77 (1996) p. 793; R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek, Phys. Rev. Lett. 77 (1996) p. 198.
29.Lidar, D.A., Chuang, I.L., and Whaley, K.B., Phys. Rev. Lett. 81 (1998) p. 2594.
30.Carvalho, A.R.R., Milman, P., de Matos Filho, R.L., and Davidovich, L., Phys. Rev. Lett. 86 (2001) p. 4988.
31. See, for instance, Preskill, J., Proc. R. Soc. London, Ser. A 454 (1998) p. 384; E. Knill, R. Laflamme, and W.H. Zurek, Science 279 (1998) p. 342; and D. Aharonov, in Annu. Rev. Comput. Phys. VI, edited by D. Stauffer (World Scientific, Singapore, 1999).
32. For a review, see Zurek, W.H., Rev. Mod. Phys. 75 (2003) p. 715.
33.Davidovich, L., Brune, M., Raimond, J.M., and Haroche, S., Phys. Rev. A 53 (1996) p. 1295; M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, and S. Haroche, Phys. Rev. Lett. 77 (1996) p. 4887.
34.Leibfried, D., Barrett, M.D., Schaetz, T., Britton, J., Chiaverini, J., Itano, W.M., Jost, J.D., Langer, C., and Wineland, D.J., Science 304 (2004) p. 1476.
35.Bennett, C.H., seminar presentation. Asimilar diagram can be found at (accessed December 2004).


Related content

Powered by UNSILO

Quantum Information

  • Luiz Davidovich


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.