Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T14:18:55.468Z Has data issue: false hasContentIssue false

Proteins for bioinspired optical and electronic materials

Published online by Cambridge University Press:  10 December 2020

Patrick B. Dennis
Affiliation:
Air Force Research Laboratory, USA; patrick.dennis.6@us.af.mil
Elizabeth L. Onderko
Affiliation:
Air Force Research Laboratory, US Naval Research Laboratory, and Capra Biosciences, Inc., USA; liz@caprabiosciences.com
Joseph M. Slocik
Affiliation:
Air Force Research Laboratory, USA; joseph.slocik.ctr@us.af.mil
Lina J. Bird
Affiliation:
US Naval Research Laboratory, USA; lina.bird@nrl.navy.mil
Daniel A. Phillips
Affiliation:
US Army Combat Capabilities Development Command Chemical Biological Center; USA; daniel.a.phillips62.ctr@mail.mil
Wendy J. Crookes-Goodson
Affiliation:
Air Force Research Laboratory, USA; wendy.goodson.1@us.af.mil
Sarah M. Glaven
Affiliation:
US Naval Research Laboratory, USA; sarah.glaven@nrl.navy.mil
Get access

Abstract

Nature has developed myriad ways for organisms to interact with their environment using light and electronic signals. Optical and electronic properties can be observed macroscopically by measuring light emission or electrical current, but are conferred at the molecular level by the arrangement of small biological molecules, specifically proteins. Here, we present a brief overview of the current uses of proteins for applications in optical and electronic materials. We provide the natural context for a range of light-emitting, light-receiving, and electronically conductive proteins, as well as demonstrate uses in biomaterials. Examples of how genetic engineering has been used to expand the range of functional properties of naturally occurring proteins are provided. We touch on how approaches to patterning and scaffolding optical and electronic proteins can be achieved using proteins with this inherent capability. While much research is still required to bring their use into the mainstream, optical and electronic proteins have the potential to create biomaterials with properties unmatched using conventional chemical synthesis.

Type
Engineered Proteins as Multifunctional Materials
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Prum, R.O., Torres, R., Kovach, C., Williamson, S., Goodman, S.M., J. Exp. Biol. 202, 3507 (1999).Google Scholar
Prum, R.O., Torres, R., J. Exp. Biol. 206, 2409 (2003).CrossRefGoogle Scholar
Crookes, W.J., Ding, L.L, Huang, Q.L., Kimball, J.R., Horwitz, J., McFall-Ngai, M.J., Science 303, 235 (2004).CrossRefGoogle Scholar
DeMartini, D.G., Izumi, M., Weaver, A.T., Pandolfi, E., Morse, D.E., J. Biol. Chem. 290, 15238 (2015).CrossRefGoogle Scholar
Mathger, L.M., Senft, S.L., Gao, M., Karaveli, S., Bell, G.R.R., Zia, R., Kuzirian, A.M., Dennis, P.B., Crookes-Goodson, W.J., Naik, R.R., Kattawar, G.W., Hanlon, R.T., Adv. Funct. Mater. 23, 3980 (2013).CrossRefGoogle Scholar
Williams, T.L., Senft, S.L., Yeo, J.J., Martin-Martinez, F.J., Kuzirian, A.M., Martin, C.A., DiBona, C.W., Chen, C.T., Dinneen, S.R., Nguyen, H.T., Gomes, C.M., Rosenthal, J.J.C., MacManes, M.D., Chu, F.X., Buehler, M.J., Hanlon, R.T., Deravi, L.F., Nat. Commun. 10, 1004 (2019).CrossRefGoogle Scholar
Chatterjee, A., Norton-Baker, B., Bagge, L.E., Patel, P., Gorodetsky, A.A., Bioinspir. Biomim. 13, 045001 (2018).CrossRefGoogle Scholar
Davidson, M.W., Campbell, R.E., Nat. Methods 6, 713 (2009).CrossRefGoogle Scholar
Rodriguez, E.A., Campbell, R.E., Lin, J.Y., Lin, M.Z., Miyawaki, A., Palmer, A.E., Shu, X., Zhang, J., Tsien, R.Y., Trends Biochem. Sci. 42, 111 (2017).CrossRefGoogle Scholar
Gather, M.C., Yun, S.H., Nat. Commun. 5, 5722 (2014).CrossRefGoogle Scholar
Putthanarat, S., Eby, R.K., Naik, R.R., Juhl, S.B., Walker, M.A., Peterman, E., Ristich, S., Magoshi, J., Tanaka, T., Stone, M.O., Farmer, B.L., Brewer, C., Ott, D., Polymer 45, 8451 (2004).CrossRefGoogle Scholar
Fernandez-Luna, V., Fernandez-Blazquez, J.P., Monclus, M.A., Rojo, F.J., Daza, R., Sanchez-deAlcazar, D., Cortajarena, A.L., Costa, R.D., Mater. Horiz. 7, 1790 (2020).CrossRefGoogle Scholar
Lu, K., Vu, C.Q., Matsuda, T., Nagai, T., Int. J. Mol. Sci. 20, 5784 (2019).CrossRefGoogle Scholar
Shcherbakova, D.M., Sengupta, P., Lippincott-Schwartz, J., Verkhusha, V.V., Annu. Rev. Biophys. 43, 303 (2014).CrossRefGoogle Scholar
Tadepalli, S., Slocik, J.M., Gupta, M.K., Naik, R.R., Singamaneni, S., Chem. Rev. 117, 12705 (2017).CrossRefGoogle Scholar
Kojima, K., Shibukawa, A., Sudo, Y., Biochemistry 59, 218 (2020).CrossRefGoogle Scholar
Luo, T.J., Soong, R., Lan, E., Dunn, B., Montemagno, C., Nat. Mater. 4, 220 (2005).CrossRefGoogle Scholar
Restrepo Schild, V., Booth, M.J., Box, S.J., Olof, S.N., Mahendran, K.R., Bayley, H., Sci. Rep. 7, 46585 (2017).CrossRefGoogle Scholar
Park, S.-Y., Tame, J.R.H., Biophys. Rev. 9, 169 (2017).CrossRefGoogle Scholar
Iseki, M., Matsunaga, S., Murakami, A., Ohno, K., Shiga, K., Yoshida, K., Sugai, M., Takahashi, T., Hori, T., Watanabe, M., Nature 415, 1047 (2002).CrossRefGoogle Scholar
Stierl, M., Stumpf, P., Udwari, D., Gueta, R., Hagedorn, R., Losi, A., Gartner, W., Petereit, L., Efetova, M., Schwarzel, M., Oertner, T.G., Nagel, G., Hegemann, P., J. Biol. Chem. 286, 1181 (2011).CrossRefGoogle Scholar
Kennedy, M.J., Hughes, R.M., Peteya, L.A., Schwartz, J.W., Ehlers, M.D., Tucker, C.L., Nat. Methods 7, 973 (2010).CrossRefGoogle Scholar
Zhang, K., Duan, L.T., Ong, Q.X., Lin, Z.L., Varman, P.M., Sung, K.J., Cui, B.X., PLoS One 9, e92917 (2014).CrossRefGoogle Scholar
Losi, A., Gardner, K.H., Moglich, A., Chem. Rev. 118, 10659 (2018).CrossRefGoogle Scholar
Harper, S.M., Neil, L.C., Gardner, K.H., Science 301, 1541 (2003).CrossRefGoogle Scholar
Lungu, O.I., Hallett, R.A., Choi, E.J., Aiken, M.J., Hahn, K.M., Kuhlman, B., Chem. Biol. 19, 926 (2012).CrossRefGoogle Scholar
Liu, L., Shadish, J.A., Arakawa, C.K., Shi, K., Davis, J., DeForest, C.A., Adv. Biosyst. 2, 1800240 (2018).CrossRefGoogle Scholar
Hammer, J.A., Ruta, A., West, J.L., Ann. Biomed. Eng. 48, 1885 (2020).CrossRefGoogle Scholar
Chernov, K.G., Redchuk, T.A., Omelina, E.S., Verkhusha, V.V., Chem. Rev. 117, 6423 (2017).CrossRefGoogle Scholar
Horner, M., Raute, K., Hummel, B., Madi, J., Creusen, G., Thomas, O.S., Christen, E.H., Hotz, N., Gubell, R.J., Engesser, R., Rebmann, B., Lauer, J., Rolauffs, B., Timmer, J., Schamel, W.W.A, Pruszak, J., Romer, W., Zurbriggen, M.D., Friedrich, C., Walther, A., Minguet, S., Sawarkar, R., Weber, W., Adv. Mater. 31, e1806727 (2019).CrossRefGoogle Scholar
Snider, R.M., Strycharz-Glaven, S.M., Tsoi, S.D., Erickson, J.S., Tender, L.M., Proc. Natl. Acad. Sci. U.S.A. 109, 15467 (2012).CrossRefGoogle Scholar
Yates, M.D., Strycharz-Glaven, S.M., Golden, J.P., Roy, J., Tsoi, S., Erickson, J.S., El-Naggar, M.Y., Barton, S.C., Tender, L.M., Nat. Nanotechnol. 11, 910 (2016).CrossRefGoogle Scholar
Xu, S., Barrozo, A., Tender, L.M., Krylov, A.I., El-Naggar, M.Y., J. Am. Chem. Soc. 140, 10085 (2018).CrossRefGoogle Scholar
Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H., El-Naggar, M.Y., Proc. Natl. Acad. Sci. U.S.A. 111, 12883 (2014).CrossRefGoogle Scholar
Steidl, R.J., Lampa-Pastirk, S., Reguera, G., Nat. Commun. 7, 12217 (2016).CrossRefGoogle Scholar
Lovley, D.R., Walker, D.J.F., Front. Microbiol. 10, 2078 (2019).CrossRefGoogle Scholar
Wang, F., Gu, Y., O'Brien, J.P., Yi, S.M., Yalcin, S.E., Srikanth, V., Shen, C., Vu, D., Ing, N.L., Hochbaum, A.I., Egelman, E.H., Malvankar, N.S., Cell 177 (2), 361 (2019).CrossRefGoogle Scholar
Strycharz-Glaven, S.M., Snider, R.M., Guiseppi-Elie, A., Tender, L.M., Energy Environ. Sci. 4, 4366 (2011).CrossRefGoogle Scholar
Dundas, C.M., Graham, A.J., Romanovicz, D.K., Keitz, B.K., ACS Synth. Biol. 7, 2726 (2018).CrossRefGoogle Scholar
Chong, G.W., Karbelkar, A.A., El-Naggar, M.Y., Curr. Opin. Chem. Biol. 47, 7 (2018).CrossRefGoogle Scholar
Amdursky, N., Wang, X.H., Meredith, P., Riley, D.J., Payne, D.J., Bradley, D.D.C., Stevens, M.M., Adv. Mater. 29 (7), 27 (2017).CrossRefGoogle Scholar
Huang, J., Ferlez, B.H., Young, E.J., Kerfeld, C.A., Kramer, D.M., Ducat, D.C., Front. Bioeng. Biotechnol. 7, 432 (2019).CrossRefGoogle Scholar
Plegaria, J.S., Yates, M.D., Glaven, S.M., Kerfeld, C.A., ACS Appl. Bio Mater. 3, 685 (2020).CrossRefGoogle Scholar
Green, J., Paget, M.S., Nat. Rev. Microbiol. 2, 954 (2004).CrossRefGoogle Scholar
Ulrich, L.E., Koonin, E.V., Zhulin, I.B., Trends Microbiol. 13, 52 (2005).CrossRefGoogle Scholar
Jacob-Dubuisson, F., Mechaly, A., Betton, J.M., Antoine, R., Nat. Rev. Microbiol. 16, 585 (2018).CrossRefGoogle Scholar
Ding, H.G., Hidalgo, E., Demple, B., J. Biol. Chem. 271, 33173 (1996).CrossRefGoogle Scholar
Tschirhart, T., Kim, E., McKay, R., Ueda, H., Wu, H.C., Pottash, A.E., Zargar, A., Negrete, A., Shiloach, J., Payne, G.F., Bentley, W.E., Nat. Commun. 8, 14030 (2017).CrossRefGoogle Scholar
VanArsdale, E., Tsao, C.Y., Liu, Y., Chen, C.Y., Payne, G.F., Bentley, W.E., ACS Sens. 4, 1180 (2019).CrossRefGoogle Scholar
Virgile, C., Hauk, P., Wu, H.C., Shang, W., Tsao, C.Y., Payne, G.F., Bentley, W.E., PLoS One 13 (5), e0196999 (2018).CrossRefGoogle Scholar
McKay, R., Hauk, P., Wu, H.C., Pottash, A.E., Shang, W., Terrell, J., Payne, G.F., Bentley, W.E., Biotechnol. Bioeng. 114, 2883 (2017).CrossRefGoogle Scholar
Pendry, J.B., Schurig, D., Smith, D.R., Science 312, 1780 (2006).CrossRefGoogle Scholar
Engheta, N., Ziolkowski, R.W., Metamaterials: Physics and Engineering Explorations (Wiley, Piscataway, NJ, 2006).CrossRefGoogle Scholar
Kaina, N., Dupre, M., Lerosey, G., Fink, M., Sci. Rep. 4, 6693 (2014).CrossRefGoogle Scholar
Kadic, M., Milton, G.W., van Hecke, M., Nat. Rev. Phys. 1, 198 (2019).CrossRefGoogle Scholar
Bell, G.R.R., Mäthger, L.M., Gao, M., Senft, S.L., Kuzirian, A.M., Kattawar, G.W., Hanlon, R.T., Adv. Mater. 26, 4352 (2014).CrossRefGoogle Scholar