Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T16:17:04.043Z Has data issue: false hasContentIssue false

Prospects for Nanobiology with Atom-Probe Tomography

Published online by Cambridge University Press:  02 March 2012

Get access

Abstract

The merits of atom-probe tomography (APT) of inorganic materials are well established, as described in this volume. However, one of the long-held aspirations of atom-probe scientists, structural and chemical characterization of organic and biological materials at near-atomic resolution, has yet to be fully realized. A few proof-of-concept type investigations have shown that APT of organic materials is feasible, but a number of challenges still exist with regard to specimen preparation and conversion of raw time-of-flight mass spectrometry data into a three-dimensional map of ions containing structural and chemical information at an acceptable resolution. Recent research aided by hardware improvements and specimen preparation advances has made some progress toward this goal. This article reviews the historical developments in this field, presents some recent results, and considers what life science researchers might expect from this technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Müller, E.W., Naturwissenchaften 14, 333 (1950).CrossRefGoogle Scholar
2.Müller, E.W., Naturf 5, 475 (1950).Google Scholar
3.Müller, E.W., Ergeb. Exakten Naturwiss. 27, 290 (1953).Google Scholar
4.Melmed, A.J., Müller, E.W., J. Chem. Phys. 29, 1037 (1958).CrossRefGoogle Scholar
5.Müller, E.W., LIFE 28, 67 (1950).Google Scholar
6.Müller, E.W., Sci. Am. 186, 58 (1952).CrossRefGoogle Scholar
7.Wolf, P., Z. Angew. Phys. 6, 529 (1954).Google Scholar
8.Horl, E., Strangler, F., Acta Phys. Austriaca 10, 1 (1956).Google Scholar
9.Becker, J., Brandes, R., J. Appl. Phys. 27, 221 (1956).CrossRefGoogle Scholar
10.Komar, A., Komar, A., Sov. Phys. Tech. Phys. 6, 166 (1972).Google Scholar
11.Giaever, I., Surf. Sci. 29, 1 (1972).CrossRefGoogle Scholar
12.Condon, G., Panitz, J., J. Vac. Sci. Technol., B 18, 1216 (2000).CrossRefGoogle Scholar
13.Müller, E.W., Z. Naturf. 11a, 88 (1956).CrossRefGoogle Scholar
14.Müller, E.W., J. Appl. Phys. 27, 474 (1956).CrossRefGoogle Scholar
1.Abbott, R.C., Rev. Sci. Instrum. 36, 1233 (1965).CrossRefGoogle Scholar
16.Gurney, T., Hutchinson, F., Young, R., J. Chem. Phys. 42, 3939 (1965).CrossRefGoogle Scholar
17.Müller, E.W., Rendulic, K., Science 156, 961 (1967).CrossRefGoogle Scholar
18.Graham, W., Hutchinson, F., Reed, D., J. Appl. Phys. 44, 5155 (1973).CrossRefGoogle Scholar
19.Machlin, E., Freilich, A., Agrawal, D., Burton, J., Briant, C., J. Microsc. 104, 127 (1975).CrossRefGoogle Scholar
20.Panitz, J., Giaver, I., Ultramicroscopy 6, 3 (1981).CrossRefGoogle Scholar
21.Panitz, J., Andrews, C., Bear, D., J. Electron. Microsc. Technol. 2, 285 (1985).CrossRefGoogle Scholar
22.Panitz, J., Rev. Sci. Instrum. 56, 572 (September 4, 1984, 1985).CrossRefGoogle Scholar
23.Panitz, J., Proceedings of the 39th Annual Meeting of the Electron Microscope Society 18 (1981).Google Scholar
24.Panitz, J.A., J. Microsc. 125, 3 (1982).CrossRefGoogle Scholar
25.Pantiz, J., Ghiglia, J., J. Microsc. 127, 259 (1982).CrossRefGoogle Scholar
26.Panitz, J.A., Ultramicroscopy 7, 241 (1982).CrossRefGoogle Scholar
27.Panitz, J.A., Ultramicroscopy 11, 161 (1983).CrossRefGoogle Scholar
28.Panitz, J., The Analysis of Organic and Biological Surfaces. Echlin, P., Ed., (Wiley, New York, 1984), p. 171.Google Scholar
29.Panitz, J., Microsc. Microanal. 11 (Suppl. 2), 92 (2005).CrossRefGoogle Scholar
30.Maruyama, T., Hasegawa, Y., Nishi, T., Sakurai, T., J. Phys. Colloq. C6, 6 (1987).Google Scholar
31.Nishikawa, O., Kato, H., J. Chem. Phys. 85, 6758 (1986).CrossRefGoogle Scholar
32.Nishikwa, O., Taniguchi, M., Chin. J. Phys. 43, 111 (February 2005).Google Scholar
33.Prosa, T., Keeney, S. Kostrna, Kelly, T., Microsc. Microanal. 15 (2009).Google Scholar
34.Prosa, T., Keeney, S. Kostrna, Kelly, T., J. Microsc. (2009), (in press).Google Scholar
35.Prosa, T., Keeney, S. Kostrna, Kelly, T., Microsc. Microanal. 13, 190 (2007).CrossRefGoogle Scholar
36.Prosa, T., Alvis, R., Kelly, T., Microsc. Microanal. 14, 1236 (2008).CrossRefGoogle Scholar
37.Nishikawa, O., Taniguchi, M., Watanbe, S., Yamagishi, A., Sasaki, T., Jpn. J. Appl. Phys. 45, 1892 (July 3, 2005, 2006).Google Scholar
38.Gault, B., Yang, W., Zheng, R., Braet, F., Ringer, S., Microsc. Microanal. 15 (2009).Google Scholar
39.Prosa, T., S.Kostrna, L., Kelly, T., 50th International Field Emission Symposium 533 (2006).Google Scholar
40.Miller, M., Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000).CrossRefGoogle Scholar
41.Kelly, T., Miller, M., Rev. Sci. Instrum. 78, 031101 (2007).CrossRefGoogle Scholar
42.Braet, F., Soon, L., Kelly, T., Larson, D., Ringer, S., in Nanotechnologies for the Life Sciences (Wiley-VCH, 2006), vol. 3, pp. 292318.Google Scholar
43.Miller, M., Cerezo, A., Hetherington, M., Smith, G.D., Atom Probe Field Ion Microscopy (Oxford University Press, Oxford, 1996).CrossRefGoogle Scholar
44.Skotheim, T., Elsenbaumer, R., Reynolds, J., Eds., Handbook of Conducting Polymers (Mercel Dekker, New York, 1998).Google Scholar
45.Bunton, J., Olson, J., Lenz, D., Kelly, T., Microsc. Microanal. 13, 418 (2007).CrossRefGoogle Scholar
46.Tsong, T., Atom-Probe Field Ion Microscopy: Field Ion Emission and Surfaces and Interfaces at Atomic Resolution (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
47.Gault, B., Vella, A., Vurpillot, F., Menand, A., Blavette, D., Deconihout, B., Ultramicroscopy 107, 713 (2007).CrossRefGoogle Scholar
48.McIntosh, J.R., Cellular Electron Microscopy Volume 79 (Academic Press, New York, 1987).Google Scholar
1.Panitz, J.A., J. Vac. Sci. Technol., A 7, 2850 (1989).CrossRefGoogle Scholar
50.Panitz, J., Stintz, A., J. Vac. Sci. Technol., A 9, 1365 (1991).Google Scholar
51.Panitz, J., Microsc. Microanal. 14/2, 122 (2008).CrossRefGoogle Scholar
52.Marko, M., Hsieh, C., Schalek, R., Frank, J., Mannella, C., Nat. Methods 4, 215 (2007).CrossRefGoogle Scholar
53.Nishikawa, O., Kimoto, M., Appl. Surf. Sci. 76/77, 424 (1994).CrossRefGoogle Scholar
54.Nishikawa, O., Kimoto, M., Iwatsuki, M., Ishikawa, Y., J. Vac. Sci. Technol., B 13, 599 (1995).CrossRefGoogle Scholar
55.Nishikawa, O., Ohtani, Y., Maeda, K., Watanabe, M., Tanaka, K., Mater. Charact. 44, 29 (2000).CrossRefGoogle Scholar
56. S.Kostrna, L., Mengelt, T., ALi, M., Larson, D., Goodman, S., Kelly, T., Microsc. Microanal. 11, 874 (2005).CrossRefGoogle Scholar
57.Thompson, K., Lawrence, D., Larson, D., Olson, J., Kelly, T., Gorman, B., Ultramicroscopy 107, 131 (2007).CrossRefGoogle Scholar
58.Nishikawa, O., Taniguchi, M., J. Vac. Sci. Technol., A 26, 1074 (2008).CrossRefGoogle Scholar
59.Bronikowski, M., Willis, P., Colbert, D., Smith, K., Smalley, R., J. Vac. Sci. Technol., A 19, 1800 (2001).CrossRefGoogle Scholar
60.Nishikawa, O., Taniguchi, M., Ikai, A., Proceedings of the Nanotech Conference and Expo 2009, Houston, TX, George Brown Convention Center, 2009.Google Scholar