Skip to main content Accessibility help
×
Home

The piezoelectronic transistor: A nanoactuator-based post-CMOS digital switch with high speed and low power

  • D.M. Newns (a1), B.G. Elmegreen (a2), X.-H. Liu (a3) and G.J. Martyna (a4)

Abstract

Moore’s law of transistor scaling, the exponential increase in the number of complementary metal oxide semiconductor (CMOS) transistors per unit area, continues unabated; however, computer clock speeds have remained frozen since 2003. The development of a new digital switch, the piezoelectronic transistor (PET), is designed to circumvent the speed and power limitations of the CMOS transistor. The PET operates on a novel principle: an electrical input is transduced into an acoustic pulse by a piezoelectric element which, in turn, is used to drive a continuous insulator-to-metal transition in a piezoresistive element, thus switching on the device. Performance is enabled by the use of key high response materials, a relaxor piezoelectric, and a rare-earth chalcogenide piezoresistor. Theory and simulation predict, using bulk material properties, that PETs can operate at one-tenth the present voltage of CMOS technology and consuming 100 times less power while running at multi-GHz clock speeds. A program to fabricate prototype PET devices is under way.

Copyright

References

Hide All
1.Baccarani, G., Wordeman, M.R., Dennard, R.H., IEEE Trans. Electron Devices 31, 425 (1984).
2.Haensch, W., Nowak, E.J., Dennard, R.H., Solomon, P.M., Bryant, A., Dokumaci, O.H., Kumar, A., Wang, X., Johnson, J.B., Fischetti, M.V., IBM J. Res. Dev. 50, 339 (2006).
3.Theis, T., Solomon, P., Science 327 1600 (2010).
4.Theis, T., Solomon, P., Proc. IEEE 98, 2005 (2010).
5.Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A., IEEE Electron Device Lett. 8, 347 (1987).
6.Salahuddin, S., Datta, S., Nano Lett. 8, 405 (2008).
7.Kopp, T., Mannhart, J., J. Appl. Phys. 106, 064504 (2009).
8.Datta, S., Das, B., Appl. Phys. Lett. 56, 665 (1990).
9.Buettiker, M., Imry, Y., Landauer, R., Pinhas, S., Phys. Rev. B 31, 6207 (1985).
10.Park, S.-E., Shrout, T.R., J. Appl. Phys. 82, 15 (1997).
11.Li, F., Zhang, S., Xu, Z., Wei, X., Luo, J., Shrout, T.R., J. Appl. Phys. 108, 034106 (2010).
12.Baek, S.H., Park, J., Kim, D.M., Aksyuk, V.A., Das, R.R., Bu, S.D., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bharadwaja, S.S.N., Bassiri-Gharb, N., Chen, Y.B., Sun, H.P., Folkman, C.M., Jang, H.W., Kreft, D.J., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R.H., Eom, C.B., Science 334, 958 (2011).
13.Jayaraman, A., Narayanamurti, V., Bucher, E., Maines, R.G., Phys. Rev. Lett. 25, 1430 (1970).
14.Jayaraman, A., Maines, R.G., Phys. Rev. B 19, 4154 (1979).
15.Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J., Adv. Mat. 24 3672 (2012).
16.Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J., J. Appl. Phys. 111, 084509 (2012).
17.Iwata, M., Orihara, H., Ishibashi, Y., Ferroelectrics, 266, 57 (2002).
18.Davis, M., Budimir, M., Damjanovic, D., Setter, N., J. Appl. Phys. 101, 054112 (2007).
19.Highland, M.J., Fister, T.T., Richard, M.-I., Fong, D.D., Fuoss, P.H., Thompson, C., Eastman, J.A., Streiffer, S.K., Stephenson, G.B., Phys. Rev. Lett. 105, 167601 (2010).
20.Kholkin, A.L., Colla, E.L., Tagantsev, A.K., Taylor, D.V., Setter, N., Appl. Phys. Lett. 68, 29 (1996).
21.Elmegreen, B.G., Martyna, G.J., Newns, D.M., Solomon, P., “4-Terminal Piezoelectronic Transistor,” US Patent application, YOR920110425US1.
22.Landau, L.D., Lifschitz, E.M., Theory of Elasticity: Course of Theoretical Physics (Butterworth-Heinemann, London, UK, 1986), Vol. 7.
23.Tiersten, F., Linear Piezoelectric Plate Vibration: Elements of the Linear Theory of Piezo-Electricity and the Vibrations of Piezoelectric Plates (Plenum Press, NY, 1969).
24.Chen, Y., Sci. China Ser. A 38, 65 (1995).
25.Zhang, R., Jiang, B., Cao, W., J. Appl. Phys. 90, 3471 (2001).
26.Gupta, D.C., Kulshrestha, S., J. Phys. Condens. Matter 21, 436011 (2009).

Keywords

The piezoelectronic transistor: A nanoactuator-based post-CMOS digital switch with high speed and low power

  • D.M. Newns (a1), B.G. Elmegreen (a2), X.-H. Liu (a3) and G.J. Martyna (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed