Skip to main content Accessibility help

Phenomenological Modeling of Fusion Welding Processes

  • S.A. David, T. DebRoy and J.M. Vitek


Welding is utilized in 50% of the industrial, commercial, and consumer products that make up the U.S. gross national product. In the construction of buildings, bridges, ships, and submarines, and in the aerospace, automotive, and electronic industries, welding is an essential activity. In the last few decades, welding has evolved from an empirical art to a more scientifically based activity requiring synthesis of knowledge from various disciplines. Defects in welds, or poor performance of welds, can lead to catastrophic failures with costly consequences, including loss of property and life.

Figure 1 is a schematic diagram of the welding process showing the interaction between the heat source and the base metal. During the interaction of the heat source with the material, several critical events occur: melting, vaporization, solidification, and solid-state transformations. The weldment is divided into three distinct regions: the fusion zone (FZ), which undergoes melting and solidification; the heat-affected zone (HAZ) adjacent to the FZ, that may experience solid-state phase changes but no melting; and the unaffected base metal (BM).

Creating the extensive experimental data base required to adequately characterize the highly complex fusion welding process is expensive and time consuming, if not impractical. One recourse is to simulate welding processes either mathematically or physically in order to develop a phenomenological understanding of the process. In mathematical modeling, a set of algebraic or differential equations are solved to obtain detailed insight of the process. In physical modeling, understanding of a component of the welding process is achieved through experiments designed to avoid complexities that are unrelated to the component investigated.

In recent years, process modeling has grown to be a powerful tool for understanding the welding process. Using computational modeling, significant progress has been made in evaluating how the physical processes in the weld pool influence the development of the weld pool and the macrostructures and microstructures of the weld.



Hide All
1.American Welding Society Statement, USA Today (March 22, 1992).
2.David, S.A. and DebRoy, T., Science 257 (1992) p. 497.
3.Advances in Welding Science and Technology, edited by David, S.A. (ASM International, Materials Park, Ohio, 1986).
4.Recent Trends in Welding Science and Technology, edited by David, S.A. and Vitek, J.M. (ASM International, Materials Park, Ohio, 1990).
5.International Trends in Welding Science and Technology, edited by David, S.A. and Vitek, J.M. (ASM International, Materials Park, OH, 1993).
6.Mathematical Modeling of Weld Phenomena, edited by Cerjak, H. and Easterling, K.E. (The Institute of Materials, London, 1993).
7. Modeling for Welding Science, DOE-BES Workshop (Cocoa Beach, March 16-19, 1993).
8.Kou, S. and Le, Y., Metall. Trans. A 14A (1983) p. 2243.
9.Oreper, G.M. and Szekely, J., J. Fluid Mech. 147 (1984) p. 53.
10.Chan, C., Mazumder, J., and Chen, M.M., Metall. Trans. A 15A (1984) p. 2175.
11.Szekely, J. in Reference 3, p. 3.
12.Paul, A. and DebRoy, T., Metall. Trans. B 19B (1988) p. 851.
13.Zacharia, T., David, S.A., Vitek, J.M., and DebRoy, T., Metall. Trans. A 20A (1989) p. 957.
14.Geankoplis, C.J., Transport Processes and Unit Operations (Allyn and Bacon, Boston, 1983).
15.Heiple, C.R. and Roper, J.R., Weld. J. Res. Supp. 61 (1982) p. 92s.
16.Heiple, C.R., Roper, J.R., Stagner, R.T., and Alden, J.J., in Reference 15, p. 72s.
17.Sahoo, P., DebRoy, T., and McNallan, M.J., in Reference 12, p. 483.
18.McNallan, M.J. and DebRoy, T., Metall. Trans. B 22B (1991) p. 557.
19.Mundra, K. and DebRoy, T., unpublished research, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA.
20.Heiple, R. and Roper, J.R., in Trends in Welding Research, edited by David, S.A., (ASM, Metals Park, OH, 1982) p. 489.
21.Richardson, F.D., Physical Chemistry of Melts in Metallurgy, Vol. 2 (Academic Press, London, 1974) p. 349.
22.Zacharia, T., David, S.A., Vitek, J.M., and DebRoy, T., Weld. J. Res. Supp. 68 (1989) p. 499s.
23.Zacharia, T., David, S.A., Vitek, J.M., and DebRoy, T., in Reference 22, p. 510s.
24.Khan, P.A.A. and DebRoy, T., Metall. Trans. B 15B (1984) p. 641.
25.DebRoy, T., Basu, S., and Mundra, K., J. Appl. Phys. 70 (1991) p. 1313.
26.Mundra, K. and DebRoy, T., Metall. Trans. B 24B (1993) p. 145.
27.Mundra, K. and DebRoy, T., Weld. J. Res. Supp. 72 (1993) p. 1s.
28.DebRoy, T., in Reference 5, p. 17.
29.Khan, P.A.A., DebRoy, T., and David, S.A., Weld. J. Res. Supp. 67 (1988) p. 1s.
30.Cieslak, M.J. and Fuerschbach, P.W., in Reference 12, p. 319.
31.Block-Bolten, A. and Eager, T.W., in Reference 24, p. 461.
32.Blake, A. and Mazumder, J., J. Eng. Industry 107 (1985) p. 275.
33.Basu, S., MS thesis, Pennsylvania State University, 1992.
34.Pehlke, R.D., Unit Processes in Extractive Metallurgy (Elsevier, New York, 1979).
35.Kraus, H.G., in Reference 22, p. 269s.
36.Anisimov, S.I. and Rakhmatulina, A.K., Son. Phys. IETP 37 (1973) p. 41.
37.Knight, C.J., AIAA J. 17 (1979) p. 519.
38.von Allmen, M., Laser-Beam Interactions with Materials (Springer-Verlag, Berlin, 1987).
39.Batanov, V.A., Bunkin, F.V., Prokhorov, A.M., and Fedorov, V.B., Sov. Phys. JETP 36 (1973) p. 311.
40.Chan, C.L. and Mazumder, J., J. Appl. Phys. 62 (1987) p. 4579.
41.Schlunder, E.U. and Gniclinski, V., Chem.-Ing.-Tech. 39 (1967) p. 578.
42.Gedeon, S.A. and Eagar, T.W., Weld. J. Res. Supp. 69 (1990) p. 264s.
43.Ohno, S. and Uda, M., Trans. Nat. Res. Inst. Met. 23 (1981) p. 243.
44.den Ouden, G. and Griebling, O., in Reference 4, p. 431.
45.Uda, M., Ohno, S., and Wada, T., J. Jpn. Weld. Soc. 38 (1969) p. 382.
46.Uda, M. and Ohno, S., Trans. Nat. Res. Inst. Met. 15 (1973) p. 20.
47.Bandopadhyay, A., Banerjee, A., and DebRoy, T., Metall. Trans. B 23B (1992) p. 207.
48.Dunn, G.J. and Eagar, T.W., Metall. Trans. A 17A (1986) p. 1865.
49.Collur, M.M. and DebRoy, T., Metall. Trans. B 20B (1989) p. 227.
50.David, S.A. and Vitek, J.M., Intl. Materials Rev. 34 (1989) p. 213.
51.Rappaz, M., David, S.A., Vitek, J.M., and Boatner, L.A., in Reference 13, p. 1125.
52.Rappaz, M., David, S.A., Vitek, J.M., and Boatner, L.A., Metall. Trans. A 21A (1990) p. 1767.
53.David, S.A., Vitek, J.M., Rappaz, M., and Boatner, L.A., in Reference 52, p. 1753.
54.Rappaz, M., Vitek, J.M., David, S.A., and Boatner, L.A., Metall. Trans. A 24A (1993) p. 1443.
55.Brooks, J.A., Baskes, M.J., and Greulich, F.A., Metall. Trans. A 22A (1991) p. 915.
56.Elmer, J.W., Eagar, T.W., and Allen, S.M., in Proc. Int'l. Conf. Stainless Steels (Iron and Steel Institute of Japan, Tokyo, 1991) p. 669.
57.Matsunawa, A., Katayama, S., and Shimidzu, M., Trans. Jpn. Weld. Res. Inst. 19 (1990) p. 67.
58.Flemings, M.C., Solidification Processing (McGraw-Hill, New York, 1984).
59.Kurz, W. and Fisher, D.J., Fundamentals of Solidification (Trans Tech Publications, Aedermannsdorf, Switzerland, 1986).
60.Langer, J.S., in Principles of Solidification and Materials Processing, Vol. 1, edited by Trivedi, R., Sekhar, J.A., and Mazumdar, J. (Oxford & JBH Publishing Co., New Delhi, 1989) p. 1.
61.Glicksman, M.E., in Reference 60, p. 11.
62.Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35 (1964) p. 444.
63.Trivedi, R., Acta Metall. 18 (1970) p. 287.
64.Kurz, W. and Fisher, D.J., Acta Metall. 29 (1981) p. 11.
65.Kurz, W., Giovanola, B., and Trivedi, R., Acta Metall. 34 (1986) p. 823.
66.Trivedi, R. and Kurz, W., in Reference 65, p. 1663.
67.and, J.S. LangerMuller-Krumbhaar, H., Acta Metall. 26 (1978) p. 1681.
68.Brooks, J.A. and Baskes, M.I., in Reference 11, p. 93.
69.Lippold, J.C. and Savage, W.F., Modeling of Casting and Welding Processes, edited by Brody, H.D. and Apelian, D. (Metallurgical Society of AIME, Warrendale, PA, 1980) p. 443.
70.Scheil, E., Z. Metallk. 34 (1942) p. 70.
71.Brody, H.D. and Flemings, M.C., Trans. AIME 236 (1966) p. 615.
72.Clyne, T.W. and Kurz, W., Metall. Trans. A 12A (1981) p. 965.
73.Savage, W.F., Weld. World 18 (1980) p. 89.
74.Davies, G.J. and Garland, J.G., Int. Met. Rev. 20 (1975) p. 83.
75.David, S.A. and Liu, C.T., in Reference 15, p. 157s.
76.Vitek, J.M. and David, S.A., The Metal Science of Joining, edited by Cieslak, M.J., Perepezko, J.H., Kang, S., and Glicksman, M.E. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1992) p. 115.
77.Elmer, J.W., in Reference 76, p. 123.
78.Vitek, J.M. and David, S.A., in Proc. Laser Processing Symposium (The Minerals, Metals, and Materials Society, Warrendale, PA, 1993) to be published.
79.Easterling, K.E. in Reference 6, p. 163.
80.Bhadeshia, H.K.D.H. and Svensson, L.E., in Reference 79, p. 109.
81.Bhadeshia, H.K.D.H., Bainite in Steels (Institute of Materials, London, 1992).
82.Bhadeshia, H.K.D.H., in Reference 4, p. 189.
83.Watt, D.F., Coon, L., Bibby, M., Goldak, J., and Henwood, C., Acta Metall. 36 (1988) p. 3029.
84.Henwood, C., Bibby, M., Goldak, J., and Watt, D., in Reference 83, p. 3037.
85.Shen, Y., Radhakrishnan, B., and Thompson, R.G., in Reference 5, p. 259.
86.Welding Handbook, 8th ed., Chapter 7, Masubuchi, K., Blodgett, O.W., Matsui, S., Ross, F.P., Rudd, C.O., and Tsai, C.L. (American Welding Society, Miami, FL, 1989).
87.Hepworth, J.K., Finite Element Calculation of Residual Stresses in Welds, (Proc. Int. Conf. Numerical Method s for Non-Linear Problems, Pineridge Prep, Swansea, Wales, September 1980) p. 51.
88.Ortega, A.R., Bertram, L.A., Fuchs, E.A., Mahin, K., and Nelson, D.V, in Reference 5, p. 89.
89.McDill, J.M.J., Oddy, A.S., and Goldak, J.A., in Reference 5, p. 105.
90.Goldak, J., in Reference 4, p. 72.
91.Mahin, K.W., Winters, W., Krafcik, J., Holden, T., Hosbons, R., and MacEwen, S., in Reference 4, p. 83.
92.Tekriwal, P. and Mazumder, J., in Reference 4, p. 91.
93.Oddy, A.S., Goldak, J.A., and McDill, J.M.J., in Reference 4, p. 97.

Related content

Powered by UNSILO

Phenomenological Modeling of Fusion Welding Processes

  • S.A. David, T. DebRoy and J.M. Vitek


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.