Skip to main content Accessibility help

Phase-change materials: The view from the liquid phase and the metallicity parameter

  • Shuai Wei (a1), Pierre Lucas (a2) and C. Austen Angell (a3)


While fast-switching rewritable nonvolatile memory units based on phase-change materials (PCMs) are already in production at major technology companies such as Intel (16–64 GB chips are currently available), an in-depth understanding of the physical factors that determine their success is still lacking. Recently, we have argued for a liquid-phase metal-to-semiconductor transition (M-SC), located not far below the melting point, Tm, as essential. The M-SC is itself a consequence of atomic rearrangements that are involved in a fragile-to-strong viscosity transition that controls both the speed of crystallization and the stabilization of the semiconducting state. Here, we review past work and introduce a new parameter, the “metallicity” (inverse of the average Pauling electronegativity of a multicomponent alloy). When Tm-scaled temperatures of known M-SCs of Group IV, V, and VI alloys are plotted against their metallicities, the curvilinear plot leads directly to the composition zone of all known PCMs and the temperature interval below Tm, where the transition should occur. The metallicity concept could provide guidance for tailoring PCMs.



Hide All
1.Eggleton, B.J., Luther-Davies, B., Richardson, K., Nat. Photonics 5, 141 (2011).
2.Tveryanovich, Y.S., Ushakov, V.M., Tverjanovich, A., J. Non Cryst. Solids 197, 235 (1996).
3.Ovshinsky, S.R., Phys. Rev. Lett. 21, 1450 (1968).
4.Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., Takao, M., Jpn. J. Appl. Phys. 26, 61 (1987).
5.Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M., J. Appl. Phys. 69, 2849 (1991).
6.Wuttig, M., Nat. Mater. 4, 265 (2005).
7.Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).
8.Orava, J., Greer, L., Gholipour, B., Hewak, D.W., Smith, C.E., Nat. Mater. 11, 279 (2012).
9.Loke, D., Skelton, J.M., Wang, W.-J., Lee, T.-H., Zhao, R., Chong, T.-C., Elliott, S.R., Proc. Natl. Acad. Sci. U.S.A. 111, 13272 (2014).
10.Wei, S., Lucas, P., Angell, C.A., J. Appl. Phys. 118, 034903 (2015).
11.Wei, S., Coleman, G.J., Lucas, P., Angell, C.A., Phys. Rev. Appl. 7, 034035 (2017).
12.Wei, S., Evenson, Z., Stolpe, M., Lucas, P., Angell, C.A., Sci. Adv. 4, eaat8632 (2018).
13.Bordas, S., Clavaguer-Mora, M.T., Legendre, B., Hancheng, C., Thermochim. Acta 107, 239 (1986).
14.Wong, H.S.P., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M., Goodson, K.E., Proc. IEEE 98, 2201 (2010).
15.Wuttig, M., Deringer, V.L., Gonze, X., Bichara, C., Raty, J.-Y., Adv. Mater. 30, 1803777 (2018).
16.Zhang, W., Mazzarello, R., Wuttig, M., Ma, E., Nat. Rev. Mater. 4, 150 (2019).
17.Angell, C.A., Ann. Rev. Phys. Chem. 34, 593 (1983).
18.Angell, C.A., Essman, U., Hemmati, M., Poole, P.H., Sciortino, F., Physica A 205, 122 (1994)
19.Hosokawa, S., Sakaguchi, Y., Tamura, K., J. Non Cryst. Solids 150, 35 (1992).
20.Otjacques, C., Raty, J.-Y., Gaspard, J.-P., Tsuchiya, Y., Bichara, C., in Collection SFN (EDP Sciences, 2011), pp. 233245.
21.Tsuchiya, Y., J. Phys. Condens. Matter 3, 3163 (1991).
22.Steimer, C., Coulet, V., Welnic, W., Dieker, H., Detemple, R., Bichara, C., Beuneu, B., Gaspard, J.-P., Wuttig, M., Adv. Mater. 20, 4535 (2008).
23.Njoroge, W.K., Wöltgens, H.-W., Wuttig, M., J. Vac. Sci. Technol. A 20, 230 (2002).
24.Chopra, K.L., Bahl, S.K., J. Appl. Phys. 40, 4171 (1969).
25.Quinn, R.K., Mater. Res. Bull. 9, 803 (1974).
26.Betts, F., Bienenstock, A., Keating, D.T., deNeufville, J.P., J. Non Cryst. Solids 7, 417 (1972).
27.Thurn, H., Ruska, J., Z. Anorg. Allg. Chem. 426, 237 (1976).
28.Hosokawa, S., Yamada, S., Tamura, K., J. Non Cryst. Solids 156, 708 (1993).
29.Sastry, S., Angell, C.A., Nat. Mater. 2, 739 (2003).
30.Nagels, P., Rotti, M., Vikhrov, S., J. Phys. Colloq. 42, C4 (1981).
31.Tsuchiya, Y., J. Non Cryst. Solids. 312–314, 212 (2002).
32.Alekseev, V.A., Andreev, A.A., Sadovskii, M.V., Sov. Phys. Usp. 23, 551 (1980).
33.Hosokawa, S., Sakaguchi, Y., Hiasa, H., Tamura, K., J. Phys. Condens. Matter 3, 6673 (1991).
34.Kakinuma, F., Ohno, S., J. Phys. Soc. Jpn. 56, 619 (1987).
35.Allred, A.L., J. Inorg. Nucl. Chem. 17, 215 (1961).
36.Kakinuma, F., Ohno, S., Suzuki, K., J. Non Cryst. Solids 117, 575 (1990).
37.Krebs, H., Ruska, J., J. Non Cryst. Solids 16, 329 (1974).
38.Bhat, M.H., Molinero, V., Soignard, E., Solomon, V.C., Sastry, S., Yarger, J.L., Angell, C.A., Nature 448, 787 (2007).
39.Zalden, P., Quirin, F., Schumacher, M., Siegel, J., Wei, S., Koc, A., Nicoul, M., Trigo, M., Andreasson, P., Enquist, H., Shu, M.J., Pardini, T., Chollet, M., Zhu, D., Lemke, H., Ronneberger, I., Larsson, J., Lindenberg, A.M., Fischer, H.E., Hau-Riege, S., Reis, D.A., Mazzarello, R., Wuttig, M., Sokolowski-Tinten, K., Science 364, 1062 (2019).
40.Zhu, M., Cojocaru-Mirédin, O., Mio, A.M., Keutgen, J., Küpers, M., Yu, Y., Cho, J.-Y., Dronskowski, R., Wuttig, M., Adv. Mater. 30, 1706735 (2018).
41.Han, N., Kim, S.I., Yang, J.-D., Lee, K., Sohn, H., So, H.-M., Ahn, C.W., Yoo, K.-H., Adv. Mater. 23, 1871 (2011).
42.Lee, T.-Y., Kim, C., Kang, Y., Suh, D.-S., Kim, K.H.P., Khang, Y., Appl. Phys. Lett. 92, 101908 (2008).
43.Raty, J.-Y., Schumacher, M., Golub, P., Deringer, V.L., Gatti, C., Wuttig, M., Adv. Mater. 31, 1806280 (2019).
44.Adam, G., Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).
45.Angell, C.A., Science 267, 1924 (1995).
46.Wei, S., Stolpe, M., Gross, O., Hembree, W., Hechler, S., Bednarcik, J., Busch, R., Lucas, P., Acta Mater . 129, 259 (2017).
47.Orava, J., Weber, H., Kaban, I., Greer, A.L., J. Chem. Phys. 144, 194503 (2016).
48.Orava, J., Hewak, D.W., Greer, A.L., Adv. Funct. Mater. 25, 4851 (2015).
49.Zalden, P., von Hoegen, A., Landreman, P., Wuttig, M., Lindenberg, A.M., Chem. Mater. 27, 5641 (2015).
50.Salinga, M., Carria, E., Kaldenbach, A., Bornhöfft, M., Benke, J., Mayer, J., Wuttig, M., Nat. Commun. 4, 2371 (2013).
51.Zhang, W., Ronneberger, I., Zalden, P., Xu, M., Salinga, M., Wuttig, M., Mazzarello, R., Sci. Rep. 4, 6529 (2014).
52.Flores-Ruiz, H., Micoulaut, M., J. Chem. Phys. 148, 034502 (2018).
53.Weber, H., Orava, J., Kaban, I., Pries, J., Greer, A.L., Phys. Rev. Mater. 2, 093405 (2018).
54.Chen, B., ten Brink, G.H., Palasantzas, G., Kooi, B.J., J. Phys. Chem. C. 121, 8569 (2017).
55.Götze, W., J. Phys. Condens. Matter 11, A1 (1999).
56.Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.W., J. Appl. Phys. 88, 3113 (2000).
57.Schumacher, M., Weber, H., Jóvári, P., Tsuchiya, Y., Youngs, T.G., Kaban, I., Mazzarello, R., Sci. Rep. 6, 27434 (2016).
58.Kalb, J.A., Wuttig, M., Spaepen, F., J. Mater. Res. 22, 748 (2007).
59.Herwig, F., Wobst, M., Z. Für Met. 83, 35 (1992).
60.Neumann, H., Herwig, F., Hoyer, W., J. Non Cryst. Solids 205–207 (Pt. 1), 438 (1996).
61.Tverjanovich, A., J. Non Cryst. Solids 298, 226 (2002).
62.Tverjanovich, A.S., Glass Phys. Chem. 29, 532 (2003).
63.Yannopoulos, S.N., Papatheodorou, G.N., Fytas, G., Phys. Rev. B 60, 15131 (1999).
64.Rhim, W.-K., Ohsaka, K., J. Cryst. Growth 208, 313 (2000).
65.Pries, J., Cojocaru-Miredin, O., Wuttig, M., MRS Bull. 44 (9), 699 (2019).


Phase-change materials: The view from the liquid phase and the metallicity parameter

  • Shuai Wei (a1), Pierre Lucas (a2) and C. Austen Angell (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed