Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T18:57:07.969Z Has data issue: false hasContentIssue false

Personal perspectives on graphene: New graphene-related materials on the horizon

Published online by Cambridge University Press:  23 November 2012

Rodney S. Ruoff*
Affiliation:
Mechanical Engineering Department and Materials Science and Engineering Program, The University of Texas at Austin; r.ruoff@mail.utexas.edu
Get access

Abstract

In this article, I describe my early interest in graphene and contributions that I and my co-authors, in particular, have made to the field, along with a brief history of the experimental discovery of graphene. I then turn to new carbon materials whose experimental syntheses might be on the horizon. One example involves using graphene as a template to generate large-area ultrathin sp3-bonded carbon sheets that could also be substitutionally doped with, for example, nitrogen atoms, as one approach to making materials of interest for quantum computing. Such large-area sp3-bonded carbon sheets hold tremendous promise for use in thermal management; as a new material for electronics and photonics; and as ultrahigh-strength components in various structures including those used in aerospace, among other applications. Another example is the class of negative-curvature carbons (NCCs) that have atom-thick walls and carbon atoms trivalently bonded to other carbon atoms. Such NCCs have a nanoscale pore structure, atom-thick walls, and exceptionally high specific surface areas, and they fill three-dimensional space in ways that suggest their use as electrode materials for ultracapacitors and batteries, as adsorbents, as support material for catalysts, and for other applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S.Nature 354, 56 (1991).CrossRefGoogle Scholar
Walker, G.F., Garret, W.G., Science 156 (3773), 385 (1967).CrossRefGoogle ScholarPubMed
Norrish, K., Discuss. Faraday Soc. 18, 120 (1954).CrossRefGoogle Scholar
“Vermiculite,”http://en.wikipedia.org/wiki/Vermiculite (accessed October 2012).Google Scholar
Fitzer, E., Kochling, K.-H., Boehm, H.P., Marsh, H., Eds., Pure Appl. Chem. 67 (3), 473 (1995).CrossRefGoogle Scholar
Lu, X.K., Huang, H., Nemchuk, N., Ruoff, R.S., Appl. Phys. Lett. 75, 193 (1999).CrossRefGoogle Scholar
Lu, X.K., Yu, M.F., Huang, H., Ruoff, R.S., Nanotechnology 10, 269 (1999).CrossRefGoogle Scholar
Zhang, Y., Small, J.P., Pontius, W.V., Kim, P.Appl. Phys. Lett. 86, 073104 (2005).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Zhang, X., Lerner, M.M., Chem. Mater. 11 (4), 1100 (1999).CrossRefGoogle Scholar
Zhang, X., Sukpirom, N., Lerner, M.M., Mater. Res. Bull. 34, 363 (1999).CrossRefGoogle Scholar
Zhang, X., Lerner, M.M., Phys. Chem. Chem. Phys. 1, 5065 (1999).CrossRefGoogle Scholar
Zhang, Z., Lerner, M.M., Chem. Mater. 8, 257 (1996).CrossRefGoogle Scholar
Mohanty, N., Moore, D., Xu, Z., Sreeprasad, T.S., Nagaraja, A., Rodriguez, A.A., Berry, V., Nat. Commun. 3, 844 (2012).CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Nature 442, 282 (2006).CrossRefGoogle Scholar
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., Nature 448, 457 (2007).CrossRefGoogle Scholar
Watcharotone, S., Dikin, D.A., Stankovich, S., Piner, R., Jung, I., Dommett, G.H.B., Evmenenko, G., Wu, S.-E., Chen, S.-F., Liu, C.-P., Nguyen, S.T., Ruoff, R.S., Nano Lett. 7, 1888 (2007).CrossRefGoogle Scholar
Jung, I., Pelton, M., Piner, R., Dikin, D.A., Stankovich, S., Watcharotone, S., Hausner, M., Ruoff, R.S., Nano Lett. 7, 3569 (2007).CrossRefGoogle Scholar
Cai, W., Piner, R.D., Stadermann, F.J., Park, S., Shaibat, M.A., Ishii, Y., Yang, D., Velamakanni, A., An, S.J., Stoller, M., An, J., Chen, D., Ruoff, R.S., Science 321, 1815 (2008).CrossRefGoogle Scholar
Jung, I., Dikin, D.A., Piner, R.D., Ruoff, R.S., Nano Lett. 8, 4283 (2008).CrossRefGoogle Scholar
Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S., Nano Lett. 9, 1593 (2009).CrossRefGoogle Scholar
Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S., Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S., Science 332, 1537 (2011).CrossRefGoogle Scholar
Zhang, L.L., Zhao, X., Stoller, M.D., Zhu, Y., Ji, H., Murali, S., Wu, Y., Perales, S., Clevenger, B., Ruoff, R.S., Nano Lett. 12, 1806 (2012).CrossRefGoogle Scholar
Stoller, M.D., Murali, S., Quarles, N., Zhu, Y., Potts, J.R., Zhu, X., Ha, H.-W., Ruoff, R.S., Phys. Chem. Chem. Phys. 14, 3388 (2012).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).CrossRefGoogle Scholar
Li, X., Cai, W., Colombo, L., Ruoff, R.S., Nano Lett. 9, 4268 (2009).CrossRefGoogle Scholar
Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S., Nano Lett. 9, 4359 (2009).CrossRefGoogle Scholar
Li, X., Magnuson, C.W., Venugopal, A., An, J., Suk, J.W., Han, B., Borysiak, M., Cai, W., Velamakanni, A., Zhu, Y., Fu, L., Vogel, E.M., Voelkl, E., Colombo, L., Ruoff, R.S., Nano Lett. 10, 4328 (2010).CrossRefGoogle Scholar
Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., Ruoff, R.S., J. Am. Chem. Soc. 133, 2816 (2011).CrossRefGoogle Scholar
Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., Ruoff, R.S., Nat. Mater. 11, 203 (2012).CrossRefGoogle Scholar
Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.-Y., Edgeworth, J., Li, X., Magnuson, C.W., Velamakanni, A., Piner, R.D., Kang, J., Park, J., Ruoff, R.S., ACS Nano 5, 1321 (2011).CrossRefGoogle Scholar
Pantelic, R.S., Suk, J.W., Magnuson, C.W., Meyer, J.C., Wachsmuth, P., Kaiser, U., Ruoff, R.S., Stahlberg, H., J. Struct. Biol. 174, 234 (2011).CrossRefGoogle Scholar
Pantelic, R.S., Suk, J.W., Hao, Y., Ruoff, R.S., Stahlberg, H., Nano Lett. 11, 4319 (2011).CrossRefGoogle Scholar
Ruoff, R., Nat. Nanotechnol. 3, 10 (2008).CrossRefGoogle Scholar
The Ruoff Group, Nanoscience and Technology Lab, bucky-central.me.utexas.edu/publications/index.html.Google Scholar
May, J.W.Surf. Sci. 17, 267 (1969).CrossRefGoogle Scholar
Hagstrom, S., Lyon, H.B., Somorjai, G.A., Phys. Rev. Lett. 15, 491 (1965).CrossRefGoogle Scholar
Lyon, H.B., Somorjai, G.A., J. Chem. Phys. 46, 2539 (1967).CrossRefGoogle Scholar
Lyon, H.B., Matera, A.M., Somorjai, G.A., in Fundamentals of Gas–Surface Interactions, Saltsburg, H., Smith, J.M., Rogers, M., Eds. (Academic Press, New York, 1967), p. 102.CrossRefGoogle Scholar
Morgan, A.E., Somorjai, G.A., Surf. Sci. 12, 405 (1968).CrossRefGoogle Scholar
Fallahazad, B., Hao, Y., Lee, K., Kim, S., Ruoff, R.S., Tutuc, E., Phys. Rev. B 85, 201408(R) (2012).CrossRefGoogle Scholar
Ruoff, R., Nature 483, S42 (2012).CrossRefGoogle Scholar
Chernozatonskii, L., Sorokin, P., Kvashnin, A., Kvashnin, D., JETP Lett. 90, 134 (2009).CrossRefGoogle Scholar
Leenaerts, O., Partoens, B., Peeters, F.M., Phys. Rev. B 80, 245422 (2009).CrossRefGoogle Scholar
Zhu, L.Y., Hu, H., Chen, Q., Wang, S., Wang, J., Ding, F., Nanotechnology 22, 185202 (2011).CrossRefGoogle Scholar
Chernozatonskii, L.A., Sorokin, P.B., Kuzubov, A.A., Sorokin, B.P., Kvashnin, A.G., Kvashnin, D.G., Avramov, P.V., Yakobson, B.I., J. Phys. Chem. C 115, 132 (2010).CrossRefGoogle Scholar
Chernozatonskii, L.A., Mavrin, B.N., Sorokin, P.B., Phys. Status Solidi B 249, 1550 (2012).CrossRefGoogle Scholar
Weber, J.R., Koehl, W.F., Varley, J.B., Janotti, A., Buckley, B.B., Van de Walle, C.G., Awschalom, D.D., Proc. Natl. Acad. Sci. U.S.A. 107, 8513 (2010).CrossRefGoogle Scholar
Townsend, S.J., Lenosky, T.J., Muller, D.A., Nichols, C.S., Elser, V., Phys. Rev. Lett. 69, 921 (1992).CrossRefGoogle Scholar
Terrones, H., Mackay, A.L., Prog. Cryst. Growth Charact. Mater. 34, 25 (1997).CrossRefGoogle Scholar
Barborini, E., Piseri, P., Milani, P., Benedek, G., Ducati, C., Robertson, J., Appl. Phys. Lett. 81, 3359 (2002).CrossRefGoogle Scholar
Park, S., Kittimanapun, K., Ahn, J.S., Kown, Y.K., Tomanek, D., J. Phys.: Condens. Matter 22 (3), 334220 (2010).Google Scholar
Park, N., Yoon, M., Berber, S., Ihm, J., Osawa, E., Tomanek, D., Phys. Rev. Lett. 91 (23), 237204 (2003).CrossRefGoogle Scholar
Huang, M.-Z., Ching, W.Y., Lenofsky, T., Phys. Rev. B. 47 (3), 1593 (1993).CrossRefGoogle Scholar
Terrones, H., Terrones, M., New J. Phys. 5, 126 (2003).CrossRefGoogle Scholar