Skip to main content Accessibility help
×
Home

Nuclear Magnetic Resonance Spectroscopy of Geological Materials

  • Jonathan F. Stebbins

Extract

From the earliest days of extractive metallurgy, materials scientists and geoscientists have shared common ground. Experimental approaches, such as phase equilibrium and structural studies, are often similar, as are the questions asked in attempts to connect microscopic fundamentals to technologically desired or naturally observed bulk properties. The actual materials studied by both groups are often similar or even identical, such as silicate ceramics and glasses, magnetic oxides, and crystals based on the perovskite structure.

Nuclear magnetic resonance (NMR) was applied to solid-state physics shortly after the technique was invented in 1946. Even at the start, many of the samples placed in magnets in physics laboratories were large single crystals of naturally occurring minerals such as gypsum (CaSO4 · 2H2O) and fluorite (CaF2), perhaps borrowed from mineralogist colleagues. In the last 10 years, however, applications to both the earth and materials science have rapidly expanded because of improvements in both technological capabilities and basic theory. Only work on inorganic materials will be discussed here, although 13C NMR studies have proved very useful in characterizing the complex, often inseparable mixtures of large organic molecules found in soils, kerogen, and coal. I will not attempt to thoroughly review the broad and fast growing literature in inorganic applications. Instead, I have chosen examples, primarily from our recent studies, to illustrate the scope of what is and will become possible.

Several recent books clearly introduced the basic concepts of solid-state NMR, and applications to crystalline and glassy silicates as well as NMR at high temperature have been reviewed recently.

Copyright

References

Hide All
1.Wilson, M.A., NMR Techniques and Applications in Geochemistry and Soil Chemistry (Pergamon, Oxford, 1987).
2.Engelhardt, G. and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, New York, 1987).
3.Fyfe, C.A., Solid State NMR for Chemists (CFC Press, Guelph, 1983).
4.Kirkpatrick, R.J., Dunn, T., Schramm, S., Smith, K.A., Oestrike, R., and Turner, G., in Structure and Bonding in Noncrystalline Solids, edited by Wolrafen, G.E. and Revesz, A.G. (Plenum Press, New York, 1986) p. 302.
5.Kirkpatrick, R.J., in Spectroscopic Methods in Mineralogy and Geology, edited by Hawthorne, F.C. (Mineralogical Society of America, Washington, DC) p. 341.
6.Eckert, H., Ber. Bunsenges Phys. Chem. 94 (1990) p. 1062.
7.Stebbins, J.F., in Spectroscopic Methods in Mineralogy and Geology, edited by Hawthorne, F.C. (Mineralogical Society of America, Washington, DC) p. 405.
8.Stebbins, J.F., Chem. Rev. 91 (1991) p. 1353.
9.Tossell, J.A., J. Non-Cryst. Solids 120 (1990) p. 13.
10.Holmes, R.R., Chem. Rev. 90 (1990) p. 17.
11.Stebbins, J.F. and McMillan, P., Am. Mineral. 74 (1989) p. 965.
12.Xue, X., Stebbins, J.F., Kanzaki, M., and Tronnes, R.G., Science 245 (1989) p. 962.
13.Xue, X., Stebbins, J.F., Kanzaki, M., McMillan, P.F., and Poe, B., Am. Mineral. 76 (1991) p. 8.
14.Kanzaki, M., Stebbins, J.F., and Xue, X., Geophys. Res. Lett. 18 (1990) p. 463.
15.Grimmer, A-R., Wieker, W., von Lampe, F., Fechner, E., Peter, R., and Molgedey, G., Z. Chem. 20 (1980) p. 453.
16.Brawer, S., Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, OH, 1985).
17.Angell, C.A., Cheeseman, P.A., and Tamaddon, S., Bull. Minéral. 106 (1983) p. 87.
18.Stebbins, J.F., Nature 351 (1991) p. 638.
19.Sato, R.K., McMillan, P.F., Dennison, P., and Dupree, R., J. Phys. Chem. 95 (1991) p. 4484.
20.Sato, R.K., McMillan, P.F., Dennison, P., and Dupree, R., Phys. Chem. Glasses 32 (1991) p. 149.
21.Bunker, B.C., Kirkpatrick, R.J., Brow, R.K., Turner, G.L., and Nelson, C., J. Am. Ceram. Soc. 74 (1991) p. 1430.
22.Stebbins, J.F., Farnan, I., and Klabunde, U., J. Am. Ceram. Soc. 11 (1989) p. 2198.
23.Yang, W-H., Kirkpatrick, R.J., and Henderson, D.M., Am. Mineral. 71 (1986) p. 712.
24.Sheriff, B.L. and Hartman, J.S., Can. Mineral. 23 (1985) p. 205.
25.Weiss, C.A. Jr., Altaner, S.P., and Kirkpatrick, R.J., Am. Mineral. 72 (1987) p. 935.
26.Circone, S., Navrotsky, A., Kirkpatrick, R.J., and Graham, C.M., Am. Mineral. 76 (1991) p. 1485.
27.Putnis, A., Salje, E., Redfern, S.A.T., Fyfe, C.A., and Strobl, H., Phys. Chem. Minerals 14 (1987) p. 446.
28.Oestrike, R., Yang, W-H., Kirkpatrick, R.J., Hervig, R.L., Navrotsky, A., and Montez, B., Geochim. Cosmochim. Acta 51 (1987) p. 2199.
29.Rose, N.M. and Bird, D.K., J. Petrol. 28 (1987) p. 1193.
30.Papike, J.J. and Zoltai, T., Am. Mineral. 52 (1967) p. 974.
31.Bird, D.K. and Helgeson, H.C., Am. J. Sci. 280 (1980) p. 907.
32.Helgeson, H.C., Delaney, J.M., Nesbitt, H.W., and Bird, D.K., Am. J. Science 278-A (1978) 229 pages.
33. D. III, Westrum, E.F. Jr., and Essene, E.J., Geochim. Cosmochim. Acta 44 (1980) p. 61.
34.Liou, J.G., Am. Mineral. 56 (1972) p. 507.
35.Ghose, S. and Tsang, T., Am. Mineral. 58 (1973) p. 748.
36.Chmelka, B.F., Mueller, K.T., Pines, A., Stebbins, J.F., Wu, Y., and Zwanziger, J.W., Nature 339 (1989) p. 42.
37.Mueller, K.T., Wu, Y., Chmelka, B.F., Stebbins, J.F., and Pines, A., J. Am. Chem. Soc. 113 (1990) p. 32.
38.Baltisberger, J., Grandinetti, P., Eastman, M., Pines, A., Farnan, I., and Stebbins, J.F., EOS, Trans. Am. Geophys. Union 72 (1991) p. 572.
39.Stebbins, J.F. and Farnan, I., Science 255 (1992) p. 586.
40.Dupree, R., Holland, D., and Williams, D.S., J. Non-Cryst. Solids 81 (1986) p. 185.
41.Dupree, R., Holland, D., and Mortuza, M.G., J. Non-Cryst. Solids 116 (1990) p. 148.
42.Maekawa, H., Maekawa, T., Kawamura, K., and Yokokawa, T., J. Non-Cryst. Solids 127 (1991) p. 53.
43.Murdoch, J.B., Stebbins, J.F., and Carmichael, I.S.E., Am. Mineral. 70 (1985) p. 332.
44.Brandriss, M.E. and Stebbins, J.F., Geochim. Cosmochim. Acta 52 (1988) p. 2659.
45.McMillan, P.F., Wolf, G.H., and Poe, B.T., Chem. Geol. (in press).
46.Mysen, B.O., J. Geophys. Res. 95 (1990) p. 15733.
47.Gaskell, P.H., Eckersley, M.C., Barnes, A.C., and Chieux, P., Nature 350 (1991) p. 675.
48.Stolper, E.M., Geochim. Cosmochim. Acta 46 (1982) p. 2609.
49.Kohn, S.C., Dupree, R., and Smith, M.E., Geochim. Cosmochim. Acta 53 (1989) p. 2925.
50.Farnan, I., Kohn, S.C., and Dupree, R., Geochim. Cosmochim. Acta 51 (1987) p. 2869.
51.Merwin, L., Keppler, H., and Sebald, A., EOS, Trans. Am. Geophys. Union 72 (1991) p. 573.
52.Yang, W-H. and Kirkpatrick, R.J., Geochim. Cosmochim. Acta 53 (1989) p. 805.
53.Massiot, D., Taulelle, F., and Coutures, J.P., Colloq. Phys 51 (1991) C5425.
54.Taulelle, F., Coutures, J.P., Massiot, D., and Rifflet, J.P., Bull Magn. Reson. 11 (1989) p. 318.
55.Farnan, I. and Stebbins, J.F., J. Am. Chem. Soc. 112 (1990) p. 32.
56.Stebbins, J.F., Farnan, I., and Xue, X., Chem. Geol. (in press).
57.Farnan, I. and Stebbins, J.F., J. Non-Cryst. Solids 124 (1990) p. 207.
58.Rigamonti, A., Adv. Phys. 33 (1984) p. 115.
59.Stebbins, J.F., Farnan, I., Williams, E.H., and Roux, J., Phys. Chem. Minerals 16 (1989) p. 763.

Related content

Powered by UNSILO

Nuclear Magnetic Resonance Spectroscopy of Geological Materials

  • Jonathan F. Stebbins

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.