Skip to main content Accessibility help

Noble gas ion beams in materials science for future applications and devices

  • Alex Belianinov (a1), Matthew J. Burch (a2), Songkil Kim (a3), Shida Tan (a4), Gregor Hlawacek (a5) and Olga S. Ovchinnikova (a6)...


Helium ion microscopy (HIM), enabled by a gas field ion source (GFIS), is an emerging imaging and nanofabrication technique compatible with many applications in materials science. The scanning electron microscope (SEM) has become ubiquitous in materials science for high-resolution imaging of materials. However, due to the fundamental limitation in focusing of electron beams, ion-beam microscopy is now being developed (e.g., at 20 kV the SEM beam diameter ranges from 0.5 to 1 nm, whereas the HIM offers 0.35 nm). The key technological advantage of the HIM is in its multipurpose design that excels in a variety of disciplines. The HIM offers higher resolution than the best available SEMs as well as the traditional gallium liquid-metal ion source (LMISs) focused ion beams (FIBs), and is capable of imaging untreated biological or other insulating samples with unprecedented resolution, depth of field, materials contrast, and image quality. GFIS FIBs also offer a direct path to defect engineering via ion implantation, three-dimensional direct write using gaseous and liquid precursors, and chemical-imaging options with secondary ion mass spectrometry. HIM covers a wide range of tasks that otherwise would require multiple tools or specialized sample preparation. In this article, we describe the underlying technology, present materials, relevant applications, and offer an outlook for the potential of FIB technology in processing materials.



Hide All
1. Kittel, C., Introduction to Solid State (Wiley, New York, 1966).
2. Koenraad, P.M., Flatté, M.E., Nat. Mater. 10, 91 (2011).
3. Kalinin, S.V., Borisevich, A., Jesse, S., Nature 539, 485 (2016).
4. Notte, J., Hill, R., McVey, S., Farkas, L., Percival, R., Ward, B., Microsc. Microanal. 12, 126 (2006).
5. Joy, D.C., Helium Ion Microscopy: Principles and Applications (Springer, New York, 2013).
6. Jesse, S., Borisevich, A.Y., Fowlkes, J.D., Lupini, A.R., Rack, P.D., Unocic, R.R., Sumpter, B.G., Kalinin, S.V., Belianinov, A., Ovchinnikova, O.S., ACS Nano 10, 5600 (2016).
7. Hlawacek, G., Gölzhäuser, A., Helium Ion Microscopy (Springer, Switzerland, 2016).
8. Lehtinen, O., Kotakoski, J., Krasheninnikov, A., Keinonen, J., Nanotechnology 22, 175306 (2011).
9. Ziegler, J.F., J. Appl. Phys. 85, 1249 (1999).
10. Garashchuk, S., Jakowski, J., Wang, L., Sumpter, B.G., J. Chem. Theory Comput. 9, 5221 (2013).
11. Ievlev, A., Jakowski, J., Burch, M., Iberi, V., Hysmith, H., Joy, D.C., Sumpter, B.G., Belianinov, A., Unocic, R.R., Ovchinnikova, O., Nanoscale (forthcoming), doi: 10.1039/C7NR04417H.
12. Ziegler, J.F., Ziegler, M.D., Biersack, J.P., Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
13. Biersack, J., Eckstein, W., Appl. Phys. A 34, 73 (1984).
14. Ullrich, M., Burenkov, A., Ryssel, H., Nucl. Instrum. Methods Phys. Res. B 228, 373 (2005).
15. Timilsina, R., Tan, S., Livengood, R., Rack, P., Nanotechnology 25, 485704 (2014).
16. Everhart, T.E., Thornley, R.F.M., J. Sci. Instrum. 37, 246 (1960).
17. Hlawacek, G., Veligura, V., van Gastel, R., Poelsema, B., J. Vac. Sci. Technol. B 32 , 020801 (2014).
18. Orloff, J., Swanson, L., Utlaut, M., High Resolution Focused Ion Beams: FIB and Its Applications: The Physics of Liquid Metal Ion Sources and Ion Optics and Their Application to Focused Ion Beam Technology (Springer, New York, 2003).
19. Hanssen, J.L., Hill, S.B., Orloff, J., McClelland, J.J., Nano Lett. 8, 2844 (2008).
20. Ji, Q., Jiang, X., King, T.-J., Leung, K.-N., Standiford, K., Wilde, S., J. Vac. Sci. Technol. B 20, 2717 (2002).
21. Bischoff, L., Ultramicroscopy 103, 59 (2005).
22. Winston, D., Cord, B.M., Ming, B., Bell, D., DiNatale, W., Stern, L., Vladar, A., Postek, M., Mondol, M., Yang, J., J. Vac. Sci. Technol. B 27, 2702 (2009).
23. Rahman, F., McVey, S., Farkas, L., Notte, J.A., Tan, S., Livengood, R.H., Scanning 34, 129 (2012).
24. Aramaki, F., Kozakai, T., Matsuda, O., Takaoka, O., Sugiyama, Y., Oba, H., Aita, K., Yasaka, A., “Photomask Repair Technology by Using Gas Field Ion Source,” Proc. SPIE Photomask Next Gener. Lithogr. Mask Technol. XIX 8441, (SPIE, Bellingham, WA, 2013) p. 84410D.
25. Gonzalez, C.M., Timilsina, R., Li, G., Duscher, G., Rack, P.D., Slingenbergh, W., van Dorp, W.F., De Hosson, J.T., Klein, K.L., Wu, H.M., J. Vac. Sci. Technol. B 32, 021602 (2014).
26. Stanford, M.G., Lewis, B.B., Iberi, V., Fowlkes, J.D., Tan, S., Livengood, R., Rack, P.D., Small 12, 1816 (2016).
27. Wu, H., Stern, L., Ferranti, D.C., Xia, D., Phaneuf, M.W., Proc. 39th Int. Symp. Testing Fail. Anal. (ASM International, Materials Park, OH, 2013) pp. 118122.
28. Rahman, F.F., Notte, J.A., Livengood, R.H., Tan, S., Ultramicroscopy 126, 10 (2013).
29. Wei, D., Huynh, C., Ribbe, A., Microsc. Microanal. 21, 1409 (2015).
30. Pekin, T.C., Allen, F.I., Minor, A.M., J. Microsc. 264 (1), 59 (2016).
31. Belianinov, A., He, Q., Dziaugys, A., Maksymovych, P., Eliseev, E., Borisevich, A., Morozovska, A., Banys, J., Vysochanskii, Y., Kalinin, S.V., Nano Lett. 15, 3808 (2015).
32. Yi, Y., Wu, C., Liu, H., Zeng, J., He, H., Wang, J., Nanoscale 7, 15711 (2015).
33. Ross, J.S., Klement, P., Jones, A.M., Ghimire, N.J., Yan, J., Mandrus, D., Taniguchi, T., Watanabe, K., Kitamura, K., Yao, W., Nat. Nanotechnol. 9, 268 (2014).
34. Yoon, K., Rahnamoun, A., Swett, J.L., Iberi, V., Cullen, D.A., Vlassiouk, I.V., Belianinov, A., Jesse, S., Sang, X., Ovchinnikova, O.S., ACS Nano 10, 8376 (2016).
35. Emmrich, D., Beyer, A., Nadzeyka, A., Bauerdick, S., Meyer, J., Kotakoski, J., Gölzhäuser, A., Appl. Phys. Lett. 108, 163103 (2016).
36. Nanda, G., Hlawacek, G., Goswami, S., Watanabe, K., Taniguchi, T., Alkemade, P.F.A., Carbon 119, 419 (2017).
37. Azcatl, A., Qin, X., Prakash, A., Zhang, C., Cheng, L., Wang, Q., Lu, N., Kim, M.J., Kim, J., Cho, K., Nano Lett. 16, 5437 (2016).
38. Fox, D.S., Zhou, Y., Maguire, P., O’Neill, A., Ó’Coileáin, C., Gatensby, R., Glushenkov, A.M., Tao, T., Duesberg, G.S., Shvets, I.V., Nano Lett. 15, 5307 (2015).
39. Stanford, M.G., Pudasaini, P.R., Belianinov, A., Cross, N., Noh, J.H., Koehler, M.R., Mandrus, D.G., Duscher, G., Rondinone, A.J., Ivanov, I.N., Ward, T.Z., Rack, P.D., Sci. Rep. 6, 27276 (2016).
40. Iberi, V., Liang, L., levlev, A.V., Stanford, M.G., Lin, M.W., Li, X., Mahjouri-Samani, M., Jesse, S., Sumpter, B.G., Kalinin, S.V., Joy, D.C., Sci. Rep. 6, 30481 (2016).
41. Stanford, M.G., Pudasaini, P.R., Gallmeier, E.T., Cross, N., Liang, L., Oyedele, A., Duscher, G., Mahjouri-Samani, M., Wang, K., Xiao, K., Geohegan, D.B., Belianinov, A., Sumpter, B.G., Rack, P.D., Adv. Funct. Mater. 1702829 (2017),
42. Lin, Z., Carvalho, B.R., Kahn, E., Lv, R., Rao, R., Terrones, H., Pimenta, M.A., Terrones, M., 2D Mater. 3, 022002 (2016).
43. Belianinov, A., Iberi, V., Tselev, A., Susner, M.A., McGuire, M.A., Joy, D., Jesse, S., Rondinone, A.J., Kalinin, S.V., Ovchinnikova, O.S., ACS Appl. Mater. Interfaces 8, 7349 (2016).
44. Silvis-Cividjian, N., Hagen, C.W., Adv. Imaging Electron Phys. 143, 1 (2006).
45. Dubner, A., Wagner, A., Melngailis, J., Thompson, C., J. Appl. Phys. 70, 665 (1991).
46. Schmied, R., Fröch, J.E., Orthacker, A., Hobisch, J., Trimmel, G., Plank, H., Phys. Chem. Chem. Phys. 16, 6153 (2014).
47. Fowlkes, J.D., Winkler, R., Lewis, B.B., Stanford, M.G., Plank, H., Rack, P.D., ACS Nano 10 (6), 6163 (2016).
48. Wu, H., Stern, L., Chen, J., Huth, M., Schwalb, C., Winhold, M., Porrati, F., Gonzalez, C., Timilsina, R., Rack, P., Nanotechnology 24, 175302 (2013).
49. Rotkina, L., Lin, J.-F., Bird, J., Appl. Phys. Lett. 83, 4426 (2003).
50. Gamo, K., Namba, S., Euro III-Vs Rev. 3, 41 (1990).
51. Matsui, S., Ichihashi, T., Mito, M., J. Vac. Sci. Technol. B 7, 1182 (1989).
52. Alkemade, P., Miro, H., Appl. Phys. A 117, 1727 (2014).


Noble gas ion beams in materials science for future applications and devices

  • Alex Belianinov (a1), Matthew J. Burch (a2), Songkil Kim (a3), Shida Tan (a4), Gregor Hlawacek (a5) and Olga S. Ovchinnikova (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed