Skip to main content Accessibility help
×
Home

Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion

  • S. Pamir Alpay (a1), Joseph Mantese (a2), Susan Trolier-McKinstry (a3), Qiming Zhang (a4) and Roger W. Whatmore (a5)...

Abstract

Thin-film electrocaloric and pyroelectric sources for electrothermal energy interconversion have recently emerged as viable means for primary and auxiliary solid-state cooling and power generation. Two significant advances have facilitated this development: (1) the formation of high-quality polymeric and ceramic thin films with figures of merit that project system-level performance as a large percentage of Carnot efficiency and (2) the ability of these newer materials to support larger electric fields, thereby permitting operation at higher voltages. This makes the power electronic architectures more favorable for thermal to electric energy interconversion. Current research targets to adequately address commercial device needs including reduction of parasitic losses, increases in mechanical robustness, and the ability to form nearly freestanding elements with thicknesses in the range of 1–10 μm. This article describes the current state-of-the-art materials, thermodynamic cycles, and device losses and points toward potential lines of research that would lead to substantially better figures of merit for electrothermal energy interconversion.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion
      Available formats
      ×

Copyright

References

Hide All
1.Lang, S.B., Ferroelectrics 230, 401 (1999).
2.Whatmore, R.W., Rep. Prog. Phys. 49, 1335 (1986).
3.Muralt, P., Rep. Prog. Phys. 64, 1339 (2001).
4.Guyomar, D., Pruvost, S., Sebald, G., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 279 (2008).
5.Moya, X., Kar-Narayan, S., Mathur, N.D., Nat. Mater. 13, 439 (2014).
6.Scott, J.F., NPG Asia Mater. 5, e72 (2013).
7.Lines, M.E., Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, UK, 1977).
8.Glass, A.M., Phys. Rev. 172, 564 (1968).
9.Furukawa, Y., Kitamura, K., Suzuki, E., Niwa, K., J. Cryst. Growth 197, 889 (1999).
10.Akcay, G., Alpay, S.P., Rossetti, G.A., Scott, J.F., J. Appl. Phys. 103 024104 (2008).
11.Zhang, J., Heitmann, A.A., Alpay, S.P., Rossetti, G.A. Jr., J. Mater. Sci. 44, 5263 (2009).
12.Olsen, R.B., Bruno, D.A., Briscoe, J.M., J. Appl. Phys. 58, 4709 (1985).
13.Frood, D.G., Can. J. Phys. 32, 313 (1954).
14.van der Ziel, A., J. Appl. Phys. 45, 4128 (1974).
15.Gonzalo, J.A., Ferroelectrics 11, 423 (1976).
16.Clingman, W.H., Moore, R.G., J. Appl. Phys. 32, 675 (1961).
17.Childress, J.D., J. Appl. Phys. 33, 1793 (1962).
18.Fatuzzo, E., Kiess, H., Nitsche, R., J. Appl. Phys. 37, 510 (1966).
19.Olsen, R.B., Briscoe, J.M., Bruno, D.A., Butler, W.F., Ferroelectrics 38, 975 (1981).
20.Olsen, R.B., J. Energy 6, 91 (1982).
21.Olsen, R.B., Evans, D., J. Appl. Phys. 54, 5941 (1983).
22.Sebald, G., Lefeuvre, E., Guyomar, D., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 538 (2008).
23.Sebald, G., Pruvost, S., Guyomar, D., Smart Mater. Struct. 17, 015012 (2008).
24.Beerman, H.P., Infrared Phys. 15, 225 (1975).
25.Davis, M., Damjanovic, D., Setter, N., J. Appl. Phys. 96, 2811 (2004).
26.Whatmore, R.W., Ainger, F.W., Proc. SPIE 395, 261 (1983).
27.Zhang, Q., Whatmore, R.W., J. Appl. Phys. 94, 5228 (2003).
28.Sussner, H., Horne, D.E., Yoon, D.Y., Appl. Phys. Lett. 32, 137 (1978).
29.Navid, A., Lynch, C.S., Pilon, L., Smart Mater. Struct. 19, 055006 (2010).
30.Shebanov, L., Borman, K., Ferroelectrics 127, 143 (1992).
31.Sebald, G., Seveyrat, L., Guyomar, D., Lebrun, L., Guiffard, B., Pruvost, S., J. Appl. Phys. 100, 124112 (2006).
32.Mischenko, A.S., Zhang, Q., Whatmore, R.W., Scott, J.F., Mathur, N.D., Appl. Phys. Lett. 89, 242912 (2006).
33.Mischenko, A.S., Zhang, Q., Scott, J.F., Whatmore, R.W., Mathur, N.D., Science 311, 1270 (2006).
34.Neese, B., Chu, B.J., Lu, S.G., Wang, Y., Furman, E., Zhang, Q.M., Science 321, 821 (2008).
35.Defay, E., Crossley, S., Kar-Narayan, S., Moya, X., Mathur, N.D., Adv. Mater. 25, 3337 (2013).
36.Liu, P.F., Wang, J.L., Meng, X.J., Yang, J., Dkhil, B., Chu, J.H., New J. Phys. 12, 023035 (2010).
37.Min, G., Rowe, D.M., Kontostavlakis, K., J. Phys. D: Appl. Phys. 37, 1301 (2004).
38.Pirc, R., Kutnjak, Z., Blinc, R., Zhang, Q.M., Appl. Phys. Lett. 98, 021909 (2011).
39.Zhang, Q.M., Bharti, V., Zhao, X., Science 280, 2101 (1998).
40.Lu, S.G., Rozic, B., Zhang, Q.M., Kutnjak, Z., Li, X.Y., Furman, E., Gorny, L.J., Lin, M.R., Malic, B., Kosec, M., Blinc, R., Pirc, R., Appl. Phys. Lett. 97, 162904 (2010).
41.Li, X.Y., Qian, X.S., Lu, S.G., Cheng, J.P., Fang, Z., Zhang, Q.M., Appl. Phys. Lett. 99, 052907 (2011).
42.Parui, J., Krupanidhi, S.B., Phys. Status Solidi RRL 2, 230 (2008).
43.Correia, T.M., Young, J.S., Whatmore, R.W., Scott, J.F., Mathur, N.D., Zhang, Q., Appl. Phys. Lett. 95, 182904 (2009).
44.Mischenko, A.S., Zhang, Q., Whatmore, R.W., Scott, J.F., Mathur, N.D., Appl. Phys. Lett. 89, 242912 (2006).
45.Feng, Z.Y., Shi, D.Q., Zeng, R., Dou, S.X., Thin Solid Films 519, 5433 (2011).
46.Feng, Z.Y., Shi, D.Q., Dou, S.X., Solid State Commun. 151, 123 (2011).
47.Saranya, D., Chaudhuri, A.R., Parui, J., Krupanidhi, S.B., Bull. Mater. Sci. 32, 259 (2009).
48.He, Y., Li, X.M., Gao, X.D., Leng, X., Wang, W., Funct. Mater. Lett. 4, 45 (2011).
49.Rozic, B., Kosec, M., Ursic, H., Holc, J., Malic, B., Zhang, Q.M., Blinc, R., Pirc, R., Kutnjak, Z., J. Appl. Phys. 110, 064118 (2011).
50.Liu, Z.K., Li, X.Y., Zhang, Q.M., Appl. Phys. Lett. 101, 082904 (2012).
51.Whatmore, R.W., Clarke, R., Glazer, A.M., J. Phys. C: Solid State Phys. 11, 3089 (1978).
52.Vopson, M.M., Solid State Commun. 152, 2067 (2012).
53.Scott, J.F., Annu. Rev. Mater. Res. 41, 229 (2011).
54.Jonker, G.H., J. Am. Ceram. Soc. 55, 57 (1972).
55.Carl, K., Hardtl, K.H., Ferroelectrics 17, 473 (1977).
56.Ricote, J., Whatmore, R.W., Barber, D.J., J. Phys.: Condens. Matter 12, 323 (2000).
57.Zhou, K., Boggs, S.A., Ramprasad, R., Aindow, M., Erkey, C., Alpay, S.P., Appl. Phys. Lett. 93, 102908 (2008).
58.Schubring, N.W., Mantese, J.V., Micheli, A.L., Catalan, A.B., Lopez, R.J., Phys. Rev. Lett. 68, 1778 (1992).
59.Kesim, M., Zhang, J., Alpay, S.P., Martin, L., Appl. Phys. Lett. 105, 052901 (2014).
60.He, J.H., Chen, J.C., Zhou, Y.H., Wang, J.T., Energy Convers. Manage. 43, 2319 (2002).
61.Sinyavsky, Y.V., Brodyansky, V.M., Ferroelectrics 131, 321 (1992).
62.Gu, H.M., Qian, X.S., Li, X.Y., Craven, B., Zhu, W.Y., Cheng, A.L., Yao, S.C., Zhang, Q.M., Appl. Phys. Lett. 102, 122904 (2013).
63.Epstein, R.I., Malloy, K.J., J. Appl. Phys. 106, 064509 (2009).
64.Ravindran, S.K.T., Huesgen, T., Kroener, M., Woias, P., Appl. Phys. Lett. 99, 104102 (2011).
65.Kar-Narayan, S., Mathur, N.D., Appl. Phys. Lett. 95, 242903 (2009).
66.Kar-Narayan, S., Mathur, N.D., J. Phys. D: Appl. Phys. 43, 032002 (2010).
67.Crossley, S., McGinnigle, J.R., Kar-Narayan, S., Mathur, N.D., Appl. Phys. Lett. 104, 082909 (2014).
68.Ozbolt, M., Kitanovski, A., Tusek, J., Poredos, A., Int. J. Refrig. 37, 16 (2014).
69.Ozbolt, M., Kitanovski, A., Tusek, J., Poredos, A., Int. J. Refrig. 40, 174 (2014).
70.Randall, C.A., Kim, N., Kucera, J.P., Cao, W.W., Shrout, T.R., J. Am. Ceram. Soc. 8, 677 (1998).
71.Griggio, F., Trolier-McKinstry, S., J. Appl. Phys. 107, 024105 (2010).
72.Bassiri-Gharb, N., Fujii, I., Hong, E., Trolier-McKinstry, S., Taylor, D.V., Damjanovic, D., J. Electroceram. 19, 47 (2007).
73.Griggio, F., Jesse, S., Kumar, A., Ovchinnikov, O., Kim, H., Jackson, T.N., Damjanovic, D., Kalinin, S.V., Trolier-McKinstry, S., Phys. Rev. Lett. 108 157604 (2012).
74.Zhang, J., Cole, M.W., Alpay, S.P., J. Appl. Phys. 108 034105 (2010).
75.Kesim, M.T., Zhang, J., Trolier-McKinstry, S., Mantese, J.V., Whatmore, R.W., Alpay, S.P., J. Appl. Phys. 114, 157604 (2013).
76.Karthik, J., Martin, L.W., Phys. Rev. B: Condens. Matter 84, 024102 (2011).
77.Karthik, J., Martin, L.W., Appl. Phys. Lett. 99, 032904 (2011).
78.Zhang, J., Misirlioglu, I.B., Alpay, S.P., Rossetti, G.A., Appl. Phys. Lett. 100, 222909 (2012).
79.Shi, Y.P., Soh, A.K., Acta Mater. 59, 5574 (2011).
80.Liu, Y., Infante, I.C., Lou, X.J., Dkhil, B., Appl. Phys. Lett. 104, 082901 (2014).
81.Morozovska, A.N., Eliseev, E.A., Svechnikov, G.S., Kalinin, S.V., J. Appl. Phys. 108, 042009 (2010).
82.Chen, L.-Q., Annu. Rev. Mater. Res. 32, 113 (2002).
83.Li, B., Wang, J.B., Zhong, X.L., Wang, F., Zhou, Y.C., J. Appl. Phys. 107, 014109 (2010).
84.Prosandeev, S., Ponomareva, I., Bellaiche, L., Phys. Rev. B: Condens. Matter 78, 052103 (2008).
85.Ponomareva, I., Lisenkov, S., Phys. Rev. Lett. 108, 167604 (2012).
86.Marathe, M., Ederer, C., Appl. Phys. Lett. 104, 212902 (2014).
87.Peng, Q., Cohen, R.E., Phys. Rev. B: Condens. Matter 83, 220103 (2011).
88.Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (The National Academies Press, Washington, DC, 2008).
89.Bai, Y., Han, X., Zheng, X.C., Qiao, L.J., Sci. Rep. 3, 2895 (2013).

Keywords

Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion

  • S. Pamir Alpay (a1), Joseph Mantese (a2), Susan Trolier-McKinstry (a3), Qiming Zhang (a4) and Roger W. Whatmore (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed