Skip to main content Accessibility help
×
Home

Nanoscale Structures: Lability, Length Scales, and Fluctuations

  • Ellen D. Williams

Abstract

This article is an edited transcript based on the David Turnbull Lecture given by Ellen D. Williams of the University of Maryland on December 2, 2003, at the Materials Research Society Fall Meeting in Boston.Williams received the award for “groundbreaking research on the atomic-scale science of surfaces and for leadership, writing, teaching, and outreach that convey her deep understanding of and enthusiasm for materials research.” This article focuses on the special properties of small structures that provide much of the exciting potential of nanotechnology.One aspect of small structures—their susceptibility to thermal fluctuations—may create or necessitate new ways of exploiting nanostructures.The advent of scanned probe imaging techniques created new opportunities for observing and understanding such structural fluctuations and the related evolution of nanostructure.Direct observations show that it is relatively easy for large numbers of atoms—the kinds of numbers that are present in nanoscale structures—to pick up and move about on the surface cooperatively with substantial impact on nano-to micron-scale structures.Such labile evolution of structure can be predicted quantitatively by using length-scale bridging techniques of statistical mechanics coupled with scanned probe observations of structural and temporal distributions.The same measurements also provide direct information about the stochastic paths of structural fluctuations that can be used outside of the traditional thermodynamic framework.Future work involves moving beyond the classical thermodynamic picture to assess the impact that the stochastic behavior has on the physical properties of individual nanostructures.

Copyright

References

Hide All
1Herring, C.Phys. Rev. 82 (1951) p.87.
2Herring, C. in Structure and Properties of Crystal Surfaces, edited by Gomer, R. and Smith, C.S. (University of Chicago Press, Chicago, 1953) p.5.
3Cahn, J.W.J.de Phys. C6 (suppl.) 43 (1982) p.199.
4Williams, E.D. and Bartelt, N.C.Science 251 (1991) p.393.
5Williams, E.D.Phaneuf, R.J.Wei, J.Bartelt, N.C. and Einstein, T.L.Surf. Sci. 294 (1993) p.219.
6Mullins, W.W.Philos. Mag. 6 (1961) p. 1313.
7Burton, W.K.Cabrera, N. and Frank, F.C.Phil. Trans. R. Soc. London 243A (1951) p.299.
8Gruber, E.E. and Mullins, W.W.J.Phys. Chem. Solids 28 (1967) p.875.
9Fisher, M.E.J.Stat. Phys. 34 (1984) p.667.
10Villain, J., Grempel, D.R. and Lapujoulade, J., J.Phys. F: Metal Phys. 15 (1985) p.809.
11Ehrlich, G. and Stolt, K.Annu. Rev. Phys. Chem. 31 (1980) p.603.
12Binnig, B. and Rohrer, H.Rev. Mod. Phys. 59 (1987) p.615.
13Bauer, E.Surf. Sci. 299/300 (1994) p.102.
14Bartelt, N.C.Tromp, R.M. and Williams, E.D.Phys. Rev. Lett. 73 (1994) p.1656.
15Yagi, K.Surf. Sci. Rep. 17 (1993) p.305.
16Bartelt, N.C.Goldberg, J.L.Einstein, T.L.Williams, E.D.Heyraud, J.C. and Métois, J.J., Phys. Rev.B 48 (1993) p.15453.
17Rottman, C.Wortis, M.Heyraud, J.C. and Metois, J.J.Phys. Rev. Lett. 52 (1984) p.1009.
18Pavlovska, A.Dobrev, D. and Bauer, E.Surf. Sci. 326 (1995) p.101.
19Emundts, A.Bonzel, H.P.Wynblatt, P.Thürmer, K., Reutt-Robey, J., and Williams, E.D.Surf. Sci. 481 (2001) p.13.
20Nowicki, M.Bombis, C.Emundts, A. and Bonzel, H.P.Phys. Rev. B 67 075405 (2003).
21Thürmer, K., Reutt-Robey, J., Williams, E.D.Emundts, A.Bonzel, H. and Uwaha, M.Phys. Rev. Lett. 87 186102 (2001).
22Uwaha, M. and Nozières, P., in Morphology and Growth Unit of Crystals, edited by Sunagawa, I. (Terra Scientific, Tokyo, 1989) p.17.
23Nozieres, P. in Solids Far from Equilibrium, edited by Godrèche, C. (Cambridge University Press, Cambridge, 1991) p.1.
24Vlachos, D.G.Schmidt, L.D. and Aris, R.Phys. Rev.B 47 (1993) p.4896.
25Yasunaga, H. and Natori, A.Surf. Sci. Rep. 15 (1992) p.205.
26Rous, P.J.Phys. Rev.B 59 (1999) p.7719.
27Liu, D.-J. and Weeks, J.D.Phys. Rev. B 57 (1998) p.14891.
28Pierre-Louis, O. and Einstein, T.L.Phys. Rev. B 62 (2000) p.13697.
29Nozières, P., J.de Phys. 48 (1987) p.1605.
30Bartelt, N.C.Einstein, T.L. and Williams, E.D.Surf. Sci. 312 (1994) p.411.
31Khare, S.V. and Einstein, T.L.Phys. Rev.B 57 (1998) p.4782.
32Ihle, T.Misbah, C. and Pierre-Louis, O., Phys. Rev. B 58 (1998) p.2289.
33Jeong, H.-C. and Weeks, J.D.Surf. Sci. 432 (1999) p.101.
34Jeong, H.-C. and Williams, E.D.Surf. Sci. Rep. 34 (1999) p.171.
35Giesen, M.Prog. Surf. Sci. 68 (2001) p.1.
36Nelson, R.C.Einstein, T.L.Khare, S.V. and Rous, P.J.Surf. Sci. 295 (1993) p.462.
37Bartelt, N.C.Einstein, T.L. and Williams, E.D.Surf. Sci. 276 (1992) p.308.
38Akutsu, N. and Akutsu, Y.J. Phys.: Condens. Matter 11 (1999) p.6635.
39Lyubinetsky, I.Daugherty, D.Richards, H.L.Einstein, T.L. and Williams, E.D.Surf. Sci. 492 (2001) p.L671.
40Rahman, T. S.Kara, A. and Durukanoglu, S.J.Phys.: Condens. Matter 15 (2003) p.S3197.
41Karim, A.Rusanen, M.Koponen, I.T.Ala-Nissila, T., and Rahman, T.S.Surf. Sci. 554 (2004) p.L113.
42Jayaprakash, C.Rottman, C. and Saam, W.F.Phys. Rev.B 30 (1984) p.6549.
43Marchenko, V.I. and Parshin, A.Y.Sov. Phys. JETP 52 (1980) p.129.
44Wang, X.-S.Goldberg, J.L.Bartelt, N.C.Einstein, T.L. and Williams, E.D.Phys. Rev. Lett. 65 (1990) p.2430.
45Richards, H.L. and Einstein, T.L. “Beyond the Wigner Distribution: Schrodinger Equations and Terrace Width Distributions,” arXiv.org e-print archive, cond-mat/0008089 (accessed August 2004).
46Uwaha, M.J. Phys. Soc. Jpn. 57 (1988) p.1681.
47Israeli, N. and Kandel, D.Phys. Rev. B 60 (1999) p.5946.
48Degawa, M. et al. , in preparation.
49Giesen, M. J.Frohn, Poensgen, M.Wolf, J.F. and Ibach, H.J. Vac. Sci. Technol., A 10 (1992) p.2597.
50Kuipers, L.Hoogeman, M.S. and Frenken, J.W.M.Phys. Rev. Lett. 71 (1993) p.3517.
51Lyubinetsky, I.Dougherty, D.B.Einstein, T.L. and Williams, E.D.Phys. Rev. B 66 085327 (2002).
52Ichimiya, A.Tanaka, Y. and Ishiyama, K.Phys. Rev. Lett. 76 (1996) p.4721.
53Ichimiya, A.Hayashi, K.Williams, E.D.Einstein, T.L.Uwaha, M. and Watanabe, K.Phys. Rev. Lett. 84 (2000) p.3662.
54Ichimiya, A.Suzuki, M. and Nishida, S.Surf. Sci. 493 (2001) p.555.
55Redner, S.A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001).
56Dougherty, D.B.Lyubinetsky, I.Williams, E.D.Constantin, M.Dasgupta, C. and Sarma, S. Das, Phys. Rev. Lett. 89 136102 (2002).
57Dougherty, D.B.Bondarchuk, O.Degawa, M. and Williams, E.D.Surf. Sci. 527 (2002) p.L213.
58Krug, J.Kallabis, H.Majumdar, S.N.Cornell, S.J.Bray, A.J. and Sire, C.Phys. Rev. B56 (1997) p.2702.
59Bondarchuk, O.Dougherty, D.B.Degawa, M.Williams, E.D.Constantin, M.Dasgupta, C. and DasSarma, S. “Correlation Time for Step Structural Fluctuations,” arXiv.org e-print archive, cond-mat/0408181 (accessed August 2004).
60Dasgupta, C.Constantin, M.Sarma, S. Das, and Majumdar, S.N.Phys. Rev. E 69 022101 (2004).

Keywords

Nanoscale Structures: Lability, Length Scales, and Fluctuations

  • Ellen D. Williams

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed