Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T11:14:30.264Z Has data issue: false hasContentIssue false

Nanomechanical Architectures—Mechanics-Driven Fabrication Based on Crystalline Membranes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Bending of thin sheets or ribbons is a ubiquitous phenomenon that impacts our daily lives, from the household thermostat to sensors in airbags. At nanometer-scale thicknesses, the mechanics responsible for bending and other distortions in sheets can be employed to create a nanofabrication approach leading to novel nanostructures. The process and resulting structures have been aptly referred to as “nanomechanical architecture.” In this article, we review recent progress in atomistic simulations that not only have helped to reveal the physical mechanisms underlying this nanofabrication approach, but also have made predictions of new nanostructures that can be created. The simulations demonstrate the importance of the atomic structure of the crystalline membrane and of the intrinsic surface stress in governing membrane bending behavior at the nanoscale and making the behavior fundamentally distinct from that at the macroscale. Molecular dynamics simulations of the bending of patterned graphene (a single-atomic layer film) suggest a new method for synthesizing carbon nanotubes with unprecedented control over their size and chirality.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Schmidt, O.G., Eberl, K., Nature 410, 168 (2001).CrossRefGoogle Scholar
2Liu, F., Rugheimer, P., Mateeva, E., Savage, D.E., Lagally, M.G., Nature 416, 498 (2002).CrossRefGoogle Scholar
3Cho, A., Science 313, 165 (2006).Google ScholarPubMed
4Prinz, V.Y., Seleznev, V.A., Gutakovsky, A.K., Chehovsky, A.V., Preobrazhenskii, V.V., Putyato, M.A., Gavrilova, T.A., Phys. E 6, 828 (2000).CrossRefGoogle Scholar
5Huang, M., Boone, C., Roberts, M., Savage, D.E., Lagally, M.G., Shaji, N., Qin, H., Blick, R., Nairn, J.A., Liu, F., Adv. Mater. 17, 2860 (2005).CrossRefGoogle Scholar
6Zhang, L., Deckhardt, E., Weber, A., Schönenberger, C., Grützmacher, D., Nanotechnology 16, 655 (2005).CrossRefGoogle Scholar
7Luchnikov, V., Sydorenko, O., Stamm, M., Adv. Mater. 17, 1177 (2005).CrossRefGoogle Scholar
8Songmuang, R., Rastelli, A., Mendach, S., Schmidt, O.G., Appl. Phys. Lett. 90, 091905 (2007).CrossRefGoogle Scholar
9Chun, I.S., Li, X., IEEE Trans. Nanotechnol. 7, 493 (2008).CrossRefGoogle Scholar
10Prinz, V. Y., Microelectron. Eng. 69, 466 (2003).CrossRefGoogle Scholar
11Timoshenko, S., J. Opt. Soc. Am. 11, 23 (1925).CrossRefGoogle Scholar
12Liu, F., Huang, M., Rugheimer, P., Savage, D.E., Lagally, M.G., Phys. Rev. Lett. 89, 136101 (2002).CrossRefGoogle Scholar
13Huang, M., Rugheimer, P., Lagally, M.G., Liu, F., Phys. Rev. B 72, 085450 (2005).CrossRefGoogle Scholar
14Schumacher, O., Mendach, S., Welsch, H., Schramm, A., Heyn, C., Hansen, W., Appl. Phys. Lett. 86, 143109 (2005).CrossRefGoogle Scholar
15Deneke, C., Muller, C., Jin-Phillipp, N.Y., Schmidt, O.G., Semicond. Sci. Technol. 17, 1278 (2002).CrossRefGoogle Scholar
16Songmuang, R., Deneke, C., Schmidt, O.G., Appl. Phys. Lett. 89, 223109 (2006).CrossRefGoogle Scholar
17Grundmann, M., Appl. Phys. Lett. 83, 2444 (2003).CrossRefGoogle Scholar
18Zang, J., Liu, F., Appl. Phys. Lett. 92, 021905 (2008).CrossRefGoogle Scholar
19Zang, J., Huang, M., Liu, F., Phys. Rev. Lett. 98, 146102 (2007).CrossRefGoogle Scholar
20Zang, J., Liu, F., Nanotechnology 18, 405501 (2007).CrossRefGoogle Scholar
21Stoney, G.G., Proc. R. Soc. Lond. A 82, 172 (1909).Google Scholar
22Liu, F., Lagally, M.G., Phys. Rev. Lett. 76, 3156 (1996).CrossRefGoogle Scholar
23Schmidt, O.G., Schmarje, N., Deneke, C., Muller, C., Jin-Phillipp, N.Y., Adv. Mater. 13, 756 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
24Yu, D., Liu, F., Nano Lett. 7, 3046 (2007).CrossRefGoogle Scholar
25Liu, F., Yu, D., Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic/molecular adsorption, U.S. Patent 60/908039 (April 2007).Google Scholar
26Scott, S.A., Lagally, M.G., J. Phys. D: Appl. Phys. 40, R75 (2007).CrossRefGoogle Scholar
27Li, X., J. Phys. D: Appl. Phys. 41, 193001 (2008).CrossRefGoogle Scholar
28Mei, Y., Huang, G., Solovev, A.A., Urena, E.B., Mönch, I., Ding, F., Reindl, T., Fu, R.K.Y., Chu, P.K., Schmidt, O.G., Adv. Mater. 20, 1 (2008).CrossRefGoogle Scholar
29Luchnikov, V., Kumar, K., Stamm, M., J. Micromech. Microeng. 18, 035041 (2008).CrossRefGoogle Scholar