Skip to main content Accessibility help

Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions

  • Jeong Young Park (a1) and Gabor A. Somorjai (a2)


Understanding fundamental mechanisms for surface electronic excitation is of great importance in surface chemistry. Charge transport through metal–oxide interfaces plays a significant role in heterogeneous catalysis. Over the last several decades, a number of experimental and theoretical results suggest that this charge flow through metal–support interfaces leads to catalytic enhancement often observed in mixed catalysts. Direct measurement of charge flow on actual catalysts is a rather challenging task because it requires the use of an electronic circuit. This approach has been enabled by a catalytic nanodiode that is mainly composed of a catalytic metal and semiconducting oxides that form a Schottky contact. In this article, we describe the advances in this approach. We show that there is close connection between the phenomena of hot-electron creation and chemical reaction that occur at both gas–solid and liquid–solid interfaces. The intensity of hot-electron flow is well correlated with the turnover rates of corresponding reactions, which opens the possibility for developing new operando methodologies to monitor catalytic reactions as well as a novel scheme for the electronic control of chemical reactions.



Hide All
1.Somorjai, G.A., Park, J.Y., Angew. Chem. Int. Ed. Engl. 47, 9212 (2008).
2.Park, J.Y., Current Trends of Surface Science and Catalysis (Springer, New York, 2014).
3.Gunasooriya, G.T.K.K., Seebauer, E.G., Saeys, M., ACS Catal. 7, 1966 (2017).
4.Lykhach, Y., Kozlov, S.M., Skala, T., Tovt, A., Stetsovych, V., Tsud, N., Dvorak, F., Johanek, V., Neitzel, A., Myslivecek, J., Fabris, S., Matolin, V., Neyman, K.M., Libuda, J., Nat. Mater. 15, 284 (2016).
5.Willinger, M.G., Zhang, W., Bondarchuk, O., Shaikhutdinov, S., Freund, H.-J., Schlögl, R., Angew. Chem. Int. Ed. Engl. 53, 5998 (2014).
6.Henry, C.R., Surf. Sci. Rep. 31, 231 (1998).
7.Schwab, G.-M., Koller, K., J. Am. Chem. Soc. 90, 3078 (1968).
8.Schwab, G.-M., Surf. Sci. 13, 198 (1969).
9.Somorjai, G.A., Frei, H., Park, J.Y., J. Am. Chem. Soc. 131, 16589 (2009).
10.Boffa, A., Lin, C., Bell, A.T., Somorjai, G.A., J. Catal. 149, 149 (1994).
11.Tauster, S.J., Acc. Chem. Res. 20, 389 (1987).
12.Nienhaus, H., Surf. Sci. Rep. 45, 1 (2002).
13.Ogawa, S., Petek, H., Surf. Sci. 363, 313 (1996).
14.Hertel, T., Knoesel, E., Wolf, M., Ertl, G., Phys. Rev. Lett. 76, 535 (1996).
15.Nienhaus, H., Bergh, H.S., Gergen, B., Majumdar, A., Weinberg, W.H., McFarland, E.W., Surf. Sci. 445, 335 (2000).
16.Gergen, B., Nienhaus, H., Weinberg, W.H., McFarland, E.W., Science 294, 2521 (2001).
17.Park, J.Y., Somorjai, G.A., J. Vac. Sci. Technol. B 24, 1967 (2006).
18.Park, J.Y., Somorjai, G.A., ChemPhysChem 7, 1409 (2006).
19.Park, J.Y., Renzas, J.R., Hsu, B.B., Somorjai, G.A., J. Phys. Chem. C 111, 15331 (2007).
20.Park, J.Y., Baker, L.R., Somorjai, G.A., Chem. Rev. 115, 2781 (2015).
21.Somorjai, G.A., Catal. Lett. 101, 1 (2004).
22.Ji, X., Zuppero, A., Gidwani, J.M., Somorjai, G.A., Nano Lett. 5, 753 (2005).
23.Hervier, A., Renzas, J.R., Park, J.Y., Somorjai, G.A., Nano Lett. 9, 3930 (2009).
24.Nedrygailov, I.I., Park, J.Y., Chem. Phys. Lett. 645, 5 (2016).
25.Nienhaus, H., Gergen, B., Weinberg, W.H., McFarland, E.W., Surf. Sci. 514, 172 (2002).
26.Sze, S.M., Ng, K.K., Physics of Semiconductor Devices (Wiley, Hoboken, NJ, 2006).
27.Park, J.Y., Lee, H., Renzas, J.R., Zhang, Y., Somorjai, G.A., Nano Lett. 8, 2388 (2008).
28.Lee, H., Nedrygailov, I.I., Lee, C., Somorjai, G.A., Park, J.Y., Angew. Chem. Int. Ed. Engl. 54, 2340 (2015).
29.Schierbaum, K., El Achhab, M., Phys. Status Solidi A 208, 2796 (2011).
30.Cakabay, Ö., El Achhab, M., Schierbaum, K., Appl. Phys. A 118, 1127 (2014).
31.Karpov, E.G., Hashemian, M.A., Dasari, S.K., J. Phys. Chem. C 117, 15632 (2013).
32.Hashemian, M.A., Palacios, E., Nedrygailov, I.I., Diesing, D., Karpov, E.G., ACS Appl. Mater. Interfaces 5, 12375 (2013).
33.Ray, N.J., Hashemian, M.A., Karpov, E.G., ACS Appl. Mater. Interfaces 7, 27749 (2015).
34.Jeon, B., Lee, H., Goddeti, K.C., Park, J.Y., ACS Appl. Mater. Interfaces 11, 15152 (2019).
35.Goddeti, K.C., Lee, H., Jeon, B., Park, J.Y., Chem. Commun. 54, 8968 (2018).
36.Goddeti, K.C., Lee, C., Lee, Y.K., Park, J.Y., Sci. Rep. 8, 7330 (2018).
37.Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K., Park, J.Y., Faraday Discuss. 214, 353 (2019).
38.Lee, H., Lim, J., Lee, C., Back, S., An, K., Shin, J.W., Ryoo, R., Jung, Y., Park, J.Y., Nat. Commun. 9, 2235 (2018).
39.Renzas, J.R., Somorjai, G.A., J. Phys. Chem. C 114, 17660 (2010).
40.Lee, S.W., Park, W., Lee, H., Song, H.C., Jung, Y., Park, J.Y., ACS Catal . 9, 8424 (2019).
41.Lee, H., Nedrygailov, I.I., Lee, S.W., Park, J.Y., Top. Catal. 61 ,915 (2018).
42.Lee, H., Nedrygailov, I.I., Lee, Y.K., Lee, C., Choi, H., Choi, J.S., Choi, C.-G., Park, J.Y., Nano Lett . 16, 1650 (2016).
43.Nedrygailov, I.I., Lee, C., Moon, S.Y., Lee, H., Park, J.Y., Angew. Chem. Int. Ed. Engl. 55, 10859 (2016).
44.Zaera, F., Chem. Rev. 112, 2920 (2012).
45.Nedrygailov, I.I., Lee, C., Moon, S.Y., Lee, H., Park, J.Y., Angew. Chem. Int. Ed. Engl. 128, 11017 (2016).
46.Nedrygailov, I.I., Lee, C., Moon, S.Y., Lee, H., Park, J.Y., Rev. Sci. Instrum. 87, 114101 (2016).
47.Lee, S.H., Nedrygailov, I.I., Oh, S., Park, J.Y., Catal. Today 303, 282 (2018).
48.Campos-Martin, J.M., Blanco-Brieva, G., Fierro, J.L.G., Angew. Chem. Int. Ed. Engl. 45, 6962 (2006).
49.Wilson, N.M., Flaherty, D.W., J. Am. Chem. Soc. 138, 574 (2015).
50.Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J., Science 332, 702 (2011).
51.Lee, Y.K., Lee, H., Lee, C., Hwang, E., Park, J.Y., J. Phys. Condens. Matter 28, 254006 (2016).
52.Lee, Y.K., Jung, C.H., Park, J., Seo, H., Somorjai, G.A., Park, J.Y., Nano Lett. 11 (10), 4251 (2011).
53.Park, Y., Choi, J., Lee, C., Cho, A.-N., Cho, D.W., Park, N.-G., Ihee, H., Park, J.Y., Nano Lett . 19, 5489 (2019).
54.Moon, S.Y., Song, H.C., Gwag, E.H., Nedrygailov, I.I., Lee, C., Kim, J.J., Doh, W.H., Park, J.Y., Nanoscale 10, 22180 (2018).
55.Linic, S., Christopher, P., Ingram, D.B., Nat. Mater. 10, 911 (2011).
56.Halas, N.J., Lal, S., Chang, W.-S., Link, S., Nordlander, P., Chem. Rev. 111, 3913 (2011).

Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions

  • Jeong Young Park (a1) and Gabor A. Somorjai (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed