Skip to main content Accessibility help
×
Home

Molecular-Dynamics Simulations of Polymer Surfaces and Interfaces

  • Gary S. Grest, Martin-D. Lacasse and Michael Murat

Extract

From a single chain in a dilute solution to an entangled polymer melt, from bulk systems to more complex interfacial problems, computer simulations have played a critical role not only in testing the basic assumptions of various theoretical models but also in interpreting experimental results. Early computer simulations of polymers were mostly carried out on a lattice using Monte Carlo methods. This approach has led to significant progress in recent years and will continue to do so in many areas. In some cases however, for example in the study of shear, lattice models have serious limitations. For this reason and also due to the availability of more powerful computers, continuum, off-lattice polymer models have recently become popular. In this article, we review some of the recent progress in studying polymers at surfaces and interfaces using continuum models.

Copyright

References

Hide All
1. For a collection of recent reviews, see Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by Binder, K. (Oxford University Press, New York, 1995).
2.Kremer, K. and Binder, K., Comp. Phys. Rep. 7 (1988) p. 259.
3.Hill, T.L., An Introduction to Statistical Thermodynamics (Dover, New York, 1986) p. 316.
4. Brownian dynamics has also been used but this method is inefficient computationally for polymers. See Neelov, I.M. and Binder, K., Macromol. Theory Simul. 4 (1995) p. 1063.
5.Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
6.Kremer, K. and Grest, G.S., in Reference 1; K. Kremer and G.S. Grest, J. Client. Phys. 92 (1990) p. 5057.
7.Chakraborty, A.K. and Tirrell, M., MRS Bulletin 21 (1) (1996) p. 28.
8.Binder, K., Milchev, A., and Baschnagel, J., Annu. Rev. Mater. Sci. 26 (1996) p. 107.
9.Baschnagel, J. and Binder, K., Macromol. Theory Simul. 5 (1996) p. 417.
10.Grest, G.S. and Murat, M., in Reference 1.
11.Lai, P-Y. and Binder, K., J. Chem. Phys. 97 (1992) p. 586; G.S. Grest and M. Murat, Macromolecules 26 (1993) p. 3108.
12.Israels, R., Gersappe, D., Fasolka, M., Roberts, V.A., and Balazs, A.C., Macromolecules 27 (1994) p. 6679.
13.Alexander, S., J. Phys. (Paris) 38 (1977) p. 983.
14.de Gennes, P-G., Macromolecules 13 (1980) p. 1069.
15.Milner, S.T., Science 251 (1991) p. 905.
16.Taunton, H.J., Toprakcioglu, C., Fetters, L.J., and Klein, J., Macromolecules 23 (1990) p. 571.
17.Patel, S.S. and Tirrell, M., Annu. Rev. Phys. Chem. 40 (1989) p. 597.
18.Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., and Fetters, L.J., Nature 370 (1994) p. 634; J. Klein, E. Kumacheva, D. Perahia, D. Mahalu, and S. Warburg, Faraday Discuss. 98 (1994) p. 173.
19.Granick, S., Demirel, A.L., Cai, L.L., and Peanasky, J., Israel J. Chem. 35 (1995) p. 75; L.L. Cai, J. Peanasky, and S. Granick, Trends Polym. Sci. 4 (1996) p. 47.
20.Overney, R.M., Leta, D.P., Pectroski, C.F., Rafailovich, M.H., Liu, Y., Quinn, J., Sokolov, J., Eisenberg, A., and Overney, G., Phys. Rev. Lett. 76 (1996) p. 1272.
21.Murat, M. and Grest, G.S., Macromolecules 22 (1989) p. 4054; M. Murat and G.S. Grest, Phys. Rev. Lett. 63 (1989) p. 1074.
22.Zhulina, E.B., Borisov, O.V., and Pryamitsyn, V.A., J. Colloid Interface Sci. 137 (1990) p. 495.
23.Zheng, X., Sauer, B.B., Van Alsten, J.G., Schwarz, S.A., Rafailovich, M.H., Sokolov, J., and Rubinstein, M., Phys. Rev. Lett. 74 (1995) p. 407.
24.Klein, J. and Luckham, P.F., Macromolecules 17 (1984) p. 1041.
25.Zajac, R. and Chakrabarti, A., Phys. Rev. E 52 (1995) p. 6536; R. Zajac and A. Chakrabarti, J. Chem. Phys. 104 (1996) p. 2418.
26.Lai, P-Y., J. Chem. Phys. 103 (1995) p. 5742.
27.de Gennes, P.G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
28.Murat, M., Macromolecules 28 (1995) p. 5928.
29. Technically speaking, to include hydrodynamic effects one also has to turn off the stochastic noise in Equation 1.
30.Grest, G.S., J. Chem. Phys. 105 (1996) p. 5532.
31.Klein, J., Perahia, D., and Warburg, S., Nature 352 (1991) p. 143.
32.Grest, G.S., Phys. Rev. Lett. 76 (1996) p. 4979.
33.Lai, P-Y. and Binder, K., J. Chem. Phys. 98 (1993) p. 2366; L. Miao, H. Guo, and M.J. Zuckerman, Macromolecules 29 (1996) p. 2289.
34.Binder, K., Adv. Polym. Sci. 112 (1994) p. 181.
35.Koberstein, J.T., MRS Bulletin 21 (1) (1996) p. 19.
36.Brown, H.R., MRS Bulletin 21 (1) (1996) p. 24.
37.Semenov, A.N., Macromolecules 27 (1994) p. 2732.
38.Grest, G.S., Lacasse, M-D., Kremer, K., and Gupta, A., J. Chem. Phys. 105 (1996).
39.Müller, M., Binder, K., and Oed, W., J. Chem. Soc. Faraday Trans. 91 (1995) p. 2369.
40.Werner, A., Schmid, F., Binder, K., and Müller, M. (unpublished) 1996.
41.Bacon, D.J. and Anderson, W.F., J. Mol. Graphics 6 (1988) p. 219; E.A. Merritt and M.E.P. Murphy, Acta Cryst. D50 (1994) p. 869.

Molecular-Dynamics Simulations of Polymer Surfaces and Interfaces

  • Gary S. Grest, Martin-D. Lacasse and Michael Murat

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed