Skip to main content Accessibility help

Modeling Diffusion in Gallium Arsenide: Recent Work

  • Yaser M. Haddara, Cynthia C. Lee, Jerry C. Hu, Michael D. Deal and John C. Bravman...


Second to silicon (Si), the most highly developed technology for semiconductor processing exists for gallium arsenide (GaAs). Unfortunately, GaAs processing is more complex than that of Si, mainly because GaAs is a compound semiconductor. Additionally, the lack of a stable native GaAS oxide and other disadvantages relative to Si have prevented this material from expanding beyond the small niche of applications where its high intrinsic electron mobility, superior radiation hardness, and direct bandgap are essential. Adequate understanding and modeling of the process physics are important for extending the “process window” available to GaAs manufacturers and for increasing the appeal of this material. This article deals with one of the most important process events: dopant diffusion.

In the next section we briefly describe device-fabrication technology and show the importance of diffusion modeling in the prediction of device characteristics. We then review some elementary diffusion mechanisms and outline the dopants that are important in GaAs-processing technology as well as the methods by which these dopants are introduced into the substrate. In subsequent sections we review the research community's current understanding of diffusion mechanisms as well as model parameters for specific dopants. Much work has been done in this field, at Stanford and by other groups, since the publication of a major review of the subject by Tan et al. in 1991. In this article, we focus on these recent contributions.



Hide All
1.Ghandhi, S.K., VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd. ed. (John Wiley & Sons, New York, 1994).
2.Howes, M.J. and Morgan, D.V., eds., Gallium Arsenide: Materials, Devices, and Circuits (John Wiley & Sons, Chichester, 1985).
3.Magerlein, J.H., Webb, D.J., Callegari, A., Feder, J.D., Fryxell, T., Guthrie, H.C., Hoh, P.D., Mitchell, J.W., Pomerene, A.T.S., Scontras, S., and Greiner, J.H., J. Appl. Phys. 61 (1987) p. 3080.
4.Muller, R.S. and Kamins, T.I., Device Electronics for Integrated Circuits, 2nd. ed. (John Wiley & Sons, New York, 1986).
5.Reed-Hill, R.E., Physical Metallurgy Principles, 2nd. ed. (PWS Engineering, Boston, 1973).
6.Schmalzried, H., Solid State Reactions, 2nd. ed. (Verlag Chemie, Weinheim, 1981).
7.Borg, R.J. and Dienes, G.J., An Introduction to Solid State Diffusion (Academic Press, Boston, 1988).
8.Gösele, U.M., Ann. Rev. Mater. Sci. 18 (1988) p. 257.
9.Fahey, P.M., Griffin, P.B., and Plummer, J.D., Reviews of Modern Physics 61 (1989) p. 289.
10.Kröger, F.A., The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).
11.LeClaire, A.D., in Solid State, edited by Jost, W. (Academic Press, New York, 1970) p. 780.
12.Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era: Process Technology (Lattice Press, Sunset Beach, 1986).
13.Giles, M.D., in VLSI Technology, 2nd. ed., edited by Sze, S.M. (McGraw-Hill Book Company, New York, 1988).
14.Murray, J.J., PhD Thesis, Stanford University, 1992.
15.Allen, E.L., PhD Thesis, Stanford University, 1991.
16.Robinson, H.G., PhD Thesis, Stanford University, 1992.
17.Rao, M.V., Nucl. Instrum. and Methods Phys. Res. B79 (1993) p. 645.
18.Mrowec, S., Defects and Diffusion in Solids: An Introduction (Elsevier/North-Holland, New York, 1980).
19.Yu, S., Tan, T.Y., and Gösele, U., J. Appl. Phys. 70 (1991) p. 4827.
20.deGroot, S.R., Thermodynamics and Irreversible Processes (North-Holland, Amsterdam, 1951).
21.Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23 (1980) p. 361.
22.Frank, F.C. and Turnbull, D., Phys. Rev. 104 (1956) p. 617.
23.Longini, R.L., Solid State Electron. 5 (1962) p. 127.
24.Deppe, D.G., Holonyak, J.N., Kish, F.A., and Baker, J.E., Appl. Phys. Lett. 50 (1987) p. 998.
25.Deppe, D.G., Holonyak, J.N., and Baker, J.E., Appl Phys. Lett. 52 (1988) p. 129.
26.Wagner, C., J. Chem. Phys. 18 (1950) p. 62.
27.Vieland, L.J., J. Phys. Chem. Solids 21 (1961) p. 318.
28.Anteil, G.R., Solid State Electron. 8 (1965) p. 943.
29.Shockley, W. and Moll, J.L., Phys. Rev. 119 (1960) p. 1480.
30.Shockley, W. and Last, J.T., Phys. Rev. 107 (1957) p. 392.
31.Tan, T.Y., Gösele, U., and Yu, S., Critical Rev. in Solid State and Mater. Sci. 17 (1991) p. 47.
32.Corbel, C., Nucl. Instrum. & Methods in Phys. Res. B63 (1992) p. 166.
33.Lee, J-L., Wei, W., Tanigawa, S., and Kawabe, M., J. Appl. Phys. 70 (1991) p. 674.
34.Rouviere, J-L., Kim, Y., Cunningham, J., Rentschler, J.A., Bourret, A., and Ourmazd, A., Phys. Rev. Lett. 68 (1992) p. 2798.
35.Jansen, R.W. and Sankey, O.F., Phys. Rev. B 39 (1989) p. 3192.
36.Baraff, G.A. and Schluter, M., Phys. Rev. Lett. 55 (1985) p. 1327.
37.Lee, C.C., PhD Thesis, Stanford University, 1994.
38.Robinson, H.G., Deal, M.D., Amaratunga, G., Griffin, P.B., Stevenson, D.A., and Plummer, J.D., J. Appl. Phys. 71 (1992) p. 2615.
39.Matsushita, S., Terada, S., Fujii, E., and Harada, Y., Appl. Phys. Lett. 63 (1993) p. 225.
40.Kavanagh, K.L., Magee, C.W., Sheets, J., and Mayer, J.W., J. Appl. Phys. 64 (1988) p. 1845.
41.Greiner, M.E. and Gibbons, J.F., J. Appl. Phys. 57 (1985) p. 5181.
42.Yu, S., Gösele, U.M., and Tan, T.Y., J. Appl. Phys. 66 (1989) p. 2952.
43.Kung, J.K. and Spitzer, W.G., J. Appl. Phys. 45 (1974) p. 4477.
44.Banwell, T.C., Maenpaa, M., Nicolet, M-A., and Tandon, J.L., J. Phys. Chem. Solids 44 (1983) p. 507.
45.Walukiewicz, W., in Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by Wolford, D.J., Bernholc, J., and Haller, E.E. (Mater. Res. Soc. Proc. 163, Pittsburgh, PA, 1990) p. 845.
46.Allen, E.L., Murray, J.J., Deal, M.D., Plummer, J.D., Jones, K.S., and Rubart, W.S., J. Electrochem. Soc. 138 (1991) p. 3440.
47.Deal, M.D., Hansen, S.E., and Sigmon, T.W., IEEE Trans. CAD 8 (1989) p. 939.
48.Kasahara, J. and Watanabe, N., in Semi-Insulating III-V Materials, edited by Makram-Ebeid, Sherif and Tuck, Brian (Shiva Publishing Limited, Evian, 1982) p. 238.
49.Kasahara, J., Kato, Y., Arai, M., and Watanabe, N., J. Electrochem. Soc. 130 (1983) p. 2275.
50.Onuma, T., Hirao, T., and Sugawa, T., J. Electrochem. Soc. 129 (1982) p. 837.
51.Vanasupa, L.S., PhD Thesis, Stanford University, 1990.
52.Yeo, Y.K., Hengehold, R.L., Kim, Y.Y., Ezis, A., Park, Y.S., and Ehret, J.E., J. Appl. Phys. 58 (1985) p. 4083.
53.He, L. and Anderson, W.A., J. Electron. Mater. 20 (1991) p. 359.
54.Desnica, U.V., Wagner, J., Haynes, T.E., and Holland, O.W., J. Appl. Phys. 71 (1992) p. 2591.
55.Haynes, T.E. and Holland, O.W., Appl. Phys. Lett. 59 (1991) p. 452.
56.Haynes, T.E., Morton, R., and Lau, S.S., Appl. Phys. Lett. 64 (1994) p. 991.
57.Moore, F.G., Dietrich, H.B., Dobisz, E.A., and Holland, O.W., Appl. Phys. Lett. 57 (1990) p. 911.
58.Lee, C.C., Deal, M.D., Jones, K.S., Robinson, H.G., and Bravman, J.C., J. Electrochem. Soc. 141 (1994) p. 2245.
59.Biersack, J.P. and Haggmark, L.G., Nucl. Instr. Methods 174 (1980) p. 257.
60.Lee, C.C., Deal, M.D., and Bravman, J.C., Appl. Phys. Lett. 64 (1994) p. 3302.
61.Hansen, S.E. and Deal, M.D., eds., SUPREM-IV.GS: Two Dimensional Process Simulation for Silicon and Gallium Arsenide (Stanford University, Palo Alto, 1993).
62.Fatt, Y.S., J. Appl. Phys. 72 (1992) p. 2846.
63.Kavanagh, K.L., Chang, J.C.P., Kirchner, P.D., Warren, A.C., and Woodall, J.M., Appl. Phys. Lett. 62 (1993) p. 286.
64.Pavesi, L., Ky, N.H., Ganière, J.D., Reinhart, F.K., Baba-Ali, N., Harrison, I., Tuck, B., and Henini, M., J. Appl. Phys. 71 (1992) p. 2225.
65.You, H-M., Gösele, U.M., and Tan, T.Y., J. Appl. Phys. 73 (1993) p. 7207.
66.Yu, S., Tan, T.Y., and Gösele, U., J. Appl. Phys. 69 (1991) p. 3547.
67.Deal, M.D. and Robinson, H.G., Solid-State Electron. 33 (1990) p. 665.
68.Harris, J.J., Clegg, J.B., Beali, R.B., Cadtagné, J., Woodridge, K., and Roberts, C., J. Cryst. Growth 111 (1991) p. 239.
69.Hu, C.J., Deal, M.D., Robinson, H.G., and Plummer, J.D., in Proc. of SOTAPOCS XVIII (Electrochem. Soc. Proc, Honolulu, 1993) p. 296.
70.Hu, C.J., Deal, M.D., and Plummer, J.D. (unpublished manuscript).
71.Hu, C.J., Deal, M.D., and Plummer, J.D. (unpublished manuscript).
72.Iguchi, H., J. Mater. Res. 6 (1991) p. 1542.
73.McLevige, W.V., Vaidanathan, K.V., and Streetman, B.G., Appl. Phys. Lett. 33 (1978) p. 127.
74.Deal, M.D. and Robinson, H.G., Appl. Phys. Lett. 55 (1989) p. 1990.
75.Uematsu, M., Wada, K., and Gösele, U., Appl. Phys. A55 (1992) p. 301.
76.Griffin, P.B., Lever, R.F., Packan, P.A., and Plummer, J.D., Appl. Phys. Lett. 64 (1993) p. 1242.
77.Giles, M.D., J. Electrochem. Soc. 138 (1991) p. 1160.
78.Humer-Hager, T. and Zwicknagl, P., Jpn. J. Appl. Phys. 27 (1988) p. 428.
79.DeLyon, T.J., Casey, J.H.C., Massoud, H.Z., Timmons, M.L., Hutchby, J.A., and Dietrich, H.B., Appl. Phys. Lett. 55 (1988) p. 2244.
80.Robinson, H.G., Deal, M.D., and Stevenson, D.A., Appl. Phys. Lett. 56 (1990) p. 554.
81.Baratte, H., Sadana, D.K., deSouza, J.P., Hallali, P.E., Schad, R.G., Norcott, M., and Cardone, F., J. Appl. Phys. 67 (1990) p. 6589.
82.Jansen, R.W., Wolde-Kidane, D.S., and Sankey, O.F., J. Appl. Phys. 64 (1988) p. 2415.
83.Retata, K., Debrie, R., and Ketata, M., J. Electronic Mater. 22 (1993) p. 129.
84.Csontos, L., Podor, B., Somogyi, K., and Andor, L., Proc. SPIE 1783 (1992) p. 559.
85.Robinson, H.G., Deal, M.D., Stevenson, D.A., and Jones, K.S., in Advanced III-V Compound Semiconductor Growth, Processing and Devices (Mater. Res. Symp. Soc. Proc. 240, Pittsburgh, PA, 1991) p. 715.
86.Robinson, H.G., Jones, K.S., Deal, M.D., and Hu, C.J., in III-V Electronic and Photonic Device Fabrication and Performance (Mater. Res. Soc. Symp. Proc. 300, Pittsburgh, PA, 1993) p. 397.
87.Tuck, B., Atomic Diffusion in III-V Semiconductors (Adam Hilger, Bristol, 1988).
88.Horio, K. and Satoh, K., Electron. Lett. 29 (1993) p. 1128.
89.Tuck, B. and Adegboyega, G.A., J. Phys. D 12 (1979) p. 1895.
90.Kasahara, J. and Watanabe, N., Jpn. J. Appl. Phys. 19 (1980) p. L151.
91.Deal, M.D. and Stevenson, D.A., J. Appl. Phys. 59 (1986) p. 2398.
92.Malik, R.J., Nagle, J., Micovic, M., Ryan, R.W., Harris, T., Geva, M., Hopkins, L.C., Vandenberg, J., Hull, R., Kopf, R.F., Anand, Y., and Braddock, W.D., J. Cryst. Growth 127 (1993) p. 686.
93.Cheong, B-H. and Chang, K.J., Phys. Rev. B 49 (1994) p. 17436.

Related content

Powered by UNSILO

Modeling Diffusion in Gallium Arsenide: Recent Work

  • Yaser M. Haddara, Cynthia C. Lee, Jerry C. Hu, Michael D. Deal and John C. Bravman...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.