Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:21:35.325Z Has data issue: false hasContentIssue false

The Metamict State

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recently, the words “metamict” or “metamictization” have been increasingly used instead of “amorphous” or “amorphization” in acknowledgment of the fact that the first recognized example of the transition from the crystalline to the aperiodic state was in natural materials—minerals. The term (originally “metamikte” from Greek for “mix otherwise” because of their complex compositions) was first defined by Broegger in a Danish encyclopedia as one of three classes of amorphous substances: porodine (= colloidal), hyaline, and metamikte. Minerals considered to be metamict were judged amorphous because of their conchoidal fracture and isotropic optical properties; however, well-developed crystal faces evidenced the prior crystalline state.

Hamberg was the first to suggest that metamictization is a radiation-induced, periodic-to-aperiodic phase transition caused by alpha particles which originate from constituent radionuclides in the uranium and thorium decay series. Rinne and Vegard confirmed by x-ray diffraction studies that metamict minerals were either amorphous or finely crystalline. Later work supported the idea of a radiation-induced transformation. The work of Stackelberg and Rottenbach established that the decrease in density, refractive indices, and birefringence correlated with the breakdown of the structure with increasing alpha-decay dose. Stackelberg and Rottenback tried to test this hypothesis directly by bombarding a thin slab of zircon with alpha particles. The results were inconclusive because the slab fractured, but this must have been one of the first experiments in which an “ion beam” was used to “modify” a material.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pascucci, M.R., Hutchison, J.L., and Hobbs, L.W., Radiation Effects 74 (1983) p. 219.CrossRefGoogle Scholar
2.Broegger, W.C., Amorf: Salmonsens store illustrerede Konversationslexikon 1 (1893) p. 742.Google Scholar
3.Hamberg, A., Geol. För. Förk. 36 (1914) p. 31.CrossRefGoogle Scholar
4.Rinne, F., Ber. Verh. Saechs. Akad, Wiss. Leipzig Math. Phys. K1. 67 (1915) p. 303.Google Scholar
5.Vegard, L., Philos. Mag. 32 (1916) p. 65.CrossRefGoogle Scholar
6.Miigge, O., Akad. Wiss. Gottingen. Math.-Phys. K1. Nachr. 2 (1922) p. 110.Google Scholar
7.Stackelberg, M.v. and Chudoba, K., Z. Kristallogr. 97 (1937) p. 252.Google Scholar
8.Anderson, B.W. and Payne, C.J., Gemmologist 7 (1937) p. 298.Google Scholar
9.Bauer, A., N. Jb. Min. Geol. Beil.-Bd. A75 (1939) p. 159.Google Scholar
10.Morgan, J.H. and Auer, M.L., Am. J. Sci. 239 (1941) p. 305.CrossRefGoogle Scholar
11.Kostyleva, E.E., U.S. Geological Survey TEI-369 (1954) 16 pp.Google Scholar
12.Stackelberg, M.v. and Rottenbach, E., Z. Kristallogr. 102 (1939a) p. 173.CrossRefGoogle Scholar
13.Stackelberg, M.v. and Rottenbach, E., Z. Kristallogr. 102 (1939b) p. 207.CrossRefGoogle Scholar
14.Holland, H.D., in Nuclear Geology: A Symposium on Nuclear Phenomena in the Earth Sciences (John Wiley & Sons, Inc., New York, 1954) p. 175.Google Scholar
15.Holland, H.D. and Gottfried, D., Acta Crystallog. 8 (1955) p. 291.CrossRefGoogle Scholar
16.Hurley, P.M. and Fairbairn, H.W., J. Appl. Phys. 23 (1952) p. 1408.CrossRefGoogle Scholar
17.Hurley, P.M. and Fairbairn, H.W., Bull. Geological Soc. Am. 64 (1953) p. 659.CrossRefGoogle Scholar
18.Pabst, A., Am. Mineralogist 39 (1952) p. 137.Google Scholar
19.Mitchell, R.S., Mineralogical Record 4 (1973a) p. 177.Google Scholar
20.Mitchell, R.S., Mineralogical Record 4 (1973b) p. 214.Google Scholar
21.Lipova, L.M., Geokhimiya 6 (1966) p. 729.Google Scholar
22.Ewing, R.C., Am. Mineralogist 60 (1975) p. 728.Google Scholar
23.Cheng, Y.-T. and Johnson, W.L., Science 235 (1987) p. 996.CrossRefGoogle Scholar
24.Graham, J. and Thornber, M.R., Am. Mineralogist 59 (1974) p. 1047.Google Scholar
25.Boatner, L.A. and Sales, B.C., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R.C. (North-Holland Physics Publishing, Amsterdam, in preparation).Google Scholar
26.Ringwood, A.E., Am. Scientist 70 (1982) p. 201.Google Scholar
27.Ringwood, A.E., Mineralogical Magazine 49 (1985) p. 159.CrossRefGoogle Scholar
28.Lumpkin, G.R., Ewing, R.C., Chakoumakos, B.C., Greegor, R.B., Lytle, F.W., Foltyn, E.M., Clinard, F.W. Jr., Boatner, L.A., and Abraham, M.M., J. Mater. Res. 1 (1986) p. 564.CrossRefGoogle Scholar
29.Wald, J.W. and Offerman, P., in Scientific Basis for Nuclear Waste Management V, edited by Lutze, W. (North-Holland, New York, 1982) p. 369.Google Scholar
30.Exarhos, G.J., in Radiation Effects in Insulators, Proceedings of the Second International Conference on Radiation Effects in Insulators, edited by Arnold, G.W. and Borders, J.A. (North-Holland Physics Publishing, Amsterdam, 1984) p. 538.Google Scholar
31.Ewing, R.C. and Headley, T.J., J. Nucl. Mater. 119 (1983) p. 102.CrossRefGoogle Scholar
32.Clinard, F.W. Jr., Ceramic Bull. 65 (1986) p. 1181.Google Scholar
33.Weber, W.J., J. Am. Ceramic Soc. 65 (1982) p. 544.CrossRefGoogle Scholar
34.Weber, W.J. and Roberts, F.P., Nucl. Technol. 60 (1983) p. 178.CrossRefGoogle Scholar
35.Weber, W.J., Radiat. Eff. 77 (1983) p. 295.CrossRefGoogle Scholar
36.Weber, W.J., Wald, J.W. and Matzke, Hj., J. Nucl. Mater. 138 (1986) p. 196.CrossRefGoogle Scholar
37.Matzke, Hj., Radiat. Eff. 64 (1982) p. 3.CrossRefGoogle Scholar
38.Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., and Ewing, R.C., Science, 236 (1987) p. 1556.CrossRefGoogle Scholar
39.Weber, W.J., J. Nucl. Mater. 98 (1981) p. 206.CrossRefGoogle Scholar
40.Headley, T.J., Arnold, G.W. and Northrup, C.J.M. Jr., in Scientific Basis for Nuclear Waste Management V, edited by Lutze, W. (Mater. Res. Soc. Proc. 11, North-Holland, New York, 1982) p. 379.Google Scholar
41.Luzzi, D.E. and Meshii, M., J. Mater. Res. 1 (1986) p. 617.CrossRefGoogle Scholar
42.Murakami, T., Chakoumakos, B.C., and Ewing, R.C., in Advances in Ceramics, Nuclear Waste Management II, vol. 20, edited by Clark, D.E., White, W.B., and Machiels, J. (American Ceramic Society, Columbus, Ohio, 1987) p. 745.Google Scholar
43.Lumpkin, G.R., Chakoumakos, B.C., and Ewing, R.C., Am. Mineralogist 71 (1986) p. 569.Google Scholar
44.Karioris, F.G., Gowda, K. Appaji, Cartz, L., and Labbe, J.C., J. Nucl. Mater. 108 and 109 (1982) p. 748.4CrossRefGoogle Scholar
45.Lumpkin, G.R. and Ewing, R.C., Phys. Chem. Minerals, submitted.Google Scholar
46.Williamson, G.K. and Hall, W.H., Acta Metall. 1 (1953) p. 22.CrossRefGoogle Scholar
47.Langford, J.I., Louër, D., Sonneveld, E.J., and Visser, J.W., Powder Diffraction 1 (1986) p. 211.CrossRefGoogle Scholar
48.Lumpkin, G.R. and Ewing, R.C., in Microbeam Analysis-1986, edited by Romig, A.D. Jr., and Chambers, W.F. (San Francisco Press, San Francisco, 1986) p. 145.Google Scholar
49.Narayan, J., Oen, O.S., Fathy, D., and Holland, O.W., Mater. Lett. 3 (1985) p. 67.CrossRefGoogle Scholar
50.Greegor, R.B., Lytle, F.W., Ewing, R.C., and Haaker, R.F., in Radiation Effects in Insulators, Proceedings of the Second International Conference on Radiation Effects in Insulators, edited by Arnold, G.W. and Borders, J.A. (North-Holland Physics Publishing, Amsterdam, 1984a) p. 587.Google Scholar
51.Greegor, R.B., Lytle, F.W., Ewing, R.C., and Haaker, R.F., in Proceedings of the Third International EXAFS Conference, edited by Hodgson, K.O., Hedman, D., and Penner-Hahn, J.E. (Springer-Verlag, New York, 1984b) p. 343.Google Scholar
52.Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R., and Ewing, R.C., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A., and Ewing, R.C. (Mater. Res. Soc Proc. 44, Pittsburgh, PA, 1985) p. 656.Google Scholar
53.Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R., and Ewing, R.C., in Scientific Basis for Nuclear Waste Management IX, edited by Werme, L.O. (Mater. Res. Soc. Proc. 50, Pittsburgh, PA, 1985) p. 387.Google Scholar
54.Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R., and Ewing, R.C., Abstracts of the 14th General Meeting of the International Mineralogical Association, Stanford, CA (1986) p. 114.Google Scholar
55.Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R., Ewing, R.C., Spiro, C.L., and Wong, J., in Scientific Basis for Nuclear Waste Management X, edited by Bates, J.K. and Seefeldt, W.B. (Mater. Res. Soc. Proc. 84, Pittsburgh, PA, 1987) p. 645.Google Scholar
56.Eyal, Y. and Fleischer, R.L., Nature 314 (1985a) p. 518.CrossRefGoogle Scholar
57.Eyal, Y. and Fleischer, R.L., Geochim. Cosmochim. Acta 49 (1985b) p. 1155.CrossRefGoogle Scholar
58.Eyal, Y., Lumpkin, G.R., and Ewing, R.C., in Scientific Basis for Radioactive Waste Management IX, edited by Werme, L.O. (Mater. Res. Soc. Proc. 50, Pittsburgh, PA, 1985) p. 379.Google Scholar
59.Eyal, Y., Lumpkin, G.R. and Ewing, R.C., in Scientific Basis for Nuclear Waste Management X, edited by Bates, J.K. and Seefeldt, W.B. (Mater. Res. Soc. Proc. 84, Pittsburgh, PA, 1987) p. 635.Google Scholar
60.Lumpkin, G.R., Eyal, Y., and Ewing, R.C., J. Mater. Res., submitted.Google Scholar
61.Lumpkin, G.R. and Chakoumakos, B.C., Geochim. Cosmochim. Acta, submitted.Google Scholar
62.Weast, R.C., editor, Handbook of Chemistry and Physics (CRC Press, Cleveland, OH, 1975).Google Scholar
63.Haaker, R.F. and Ewing, R.C., Nucl. Chem. Waste Management 1 (1980) p. 51.Google Scholar
64.Chakoumakos, B.C. and Ewing, R.C., Abstracts of Geological Society of America Annual Meeting, Orlando, FL (1985) p. 542.Google Scholar