Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T14:36:05.345Z Has data issue: false hasContentIssue false

Materials synthesis in a bubble

Published online by Cambridge University Press:  09 May 2019

Stephan Barcikowski
Affiliation:
Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Germany; stephan.barcikowski@uni-due.de
Anton Plech
Affiliation:
Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Germany; anton.plech@kit.edu
Kenneth S. Suslick
Affiliation:
Department of Chemistry, University of Illinois at Urbana-Champaign, USA; ksuslick@illinois.edu
Alfred Vogel
Affiliation:
Institute of Biomedical Optics, University of Luebeck, Germany; vogel@bmo.uni-luebeck.de
Get access

Abstract

Ultrasonic sonochemistry and pulsed laser ablation in liquids (LAL) are modern techniques for materials synthesis that are in different ways linked to the formation and collapse of cavitation bubbles. We provide an overview of the physics of laser-induced and acoustically driven bubble oscillations and then describe how the high pressures and temperatures associated with ablation and bubble collapse, as well as emitted shock waves, take part in material synthesis inside and around the bubble. Emphasis is placed on the mechanisms of sonochemical synthesis and modification, and on a step-by-step account of the events from laser ablation through interaction of ablation products with the surrounding liquid up to the modification or aggregation of particles within the bubble. Both sonochemistry and LALs yield nanostructured materials and colloidal nanoparticles with unique properties. The synthesis process has been demonstrated to be scalable.

Type
Acoustic Processes in Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lauterborn, W., Kurz, T., Rep. Prog. Phys. 73, 106501 (2010).CrossRefGoogle Scholar
Brennen, C.E., Cavitation and Bubble Dynamics (Oxford University Press, New York, 1995).Google Scholar
Vogel, A., Busch, S., Parlitz, U., J. Acoust. Soc. Am. 100, 148 (1996).CrossRefGoogle Scholar
Vogel, A., Lauterborn, W., J. Acoust. Soc. Am. 84, 719 (1988).CrossRefGoogle Scholar
Lauterborn, W., Vogel, A., in Shock Wave Emission by Laser Generated Bubbles , Delale, C.F., Ed. (Springer-Verlag, Berlin, 2013), p. 67.CrossRefGoogle Scholar
Prozorov, T., Prozorov, R., Suslick, K.S., J. Am. Chem. Soc. 126, 13890 (2004).CrossRefGoogle Scholar
Doktycz, S.J., Suslick, K.S., Science 247, 1067 (1990).CrossRefGoogle Scholar
Hinman, J.J., Suslick, K.S., Top. Curr. Chem. 375, 1 (2017).Google Scholar
Vogel, A., Lauterborn, W., Timm, R., J. Fluid Mech. 206, 299 (1989).CrossRefGoogle Scholar
Philipp, A., Lauterborn, W., J. Fluid Mech. 361, 75 (1998).CrossRefGoogle Scholar
Dular, M., Pozar, T., Zevnik, J., Petkovsek, R., Wear 418, 13 (2019).CrossRefGoogle Scholar
Brujan, E.A., Nahen, K., Schmidt, P., Vogel, A., J. Fluid Mech. 433, 251 (2001).CrossRefGoogle Scholar
Noack, J., Vogel, A., IEEE J. Quantum Electron. 35, 1156 (1999).CrossRefGoogle Scholar
Barber, B.P., Hiller, R.A., Lofstedt, R., Putterman, S.J., Weninger, K.R., Phys. Rep. 281, 65 (1997).CrossRefGoogle Scholar
Putterman, S.J., Weninger, K.R., Annu. Rev. Fluid Mech. 32, 445 (2000).CrossRefGoogle Scholar
Brenner, M.P., Hilgenfeldt, S., Lohse, D., Rev. Mod. Phys. 74, 425 (2002).CrossRefGoogle Scholar
Suslick, K.S., Flannigan, D.J., Annu. Rev. Phys. Chem. 59, 659 (2008).CrossRefGoogle Scholar
Flint, E.B., Suslick, K.S., Science 253, 1397 (1991).CrossRefGoogle Scholar
Flannigan, D.J., Suslick, K.S., Nature 434, 52 (2005).CrossRefGoogle Scholar
Didenko, Y.T., Suslick, K.S., Nature 418, 394 (2002).CrossRefGoogle Scholar
Didenko, Y.T., McNamara, W.B., Suslick, K.S., Nature 407, 877 (2000).CrossRefGoogle Scholar
Didenko, Y.T., McNamara, W.B., Suslick, K.S., J. Am. Chem. Soc. 121, 5817 (1999).CrossRefGoogle Scholar
Suslick, K.S., Eddingsaas, N.C., Flannigan, D.J., Hopkins, S.D., Xu, H., Acc. Chem. Res. 51, 2169 (2018).CrossRefGoogle Scholar
Pecha, R., Gompf, B., Phys. Rev. Lett. 84, 1328 (2000).CrossRefGoogle Scholar
Weninger, K.R., Evans, P.G., Putterman, S.J., Phys. Rev. E 61, R1020 (2000).CrossRefGoogle Scholar
Zhang, D.S., Goekce, B., Barcikowski, S., Chem. Rev. 117, 3990 (2017).CrossRefGoogle Scholar
Streich, C., Akkari, L., Decker, C., Bormann, J., Rehbock, C., Muller-Schiffmann, A., Niemeyer, F.C., Nagel-Steger, L., Willbold, D., Sacca, B., Korth, C., Schrader, T., Barcikowski, S., ACS Nano 10, 7582 (2016).CrossRefGoogle Scholar
Merk, V., Rehbock, C., Becker, F., Hagemann, U., Nienhaus, H., Barcikowski, S., Langmuir 30, 4213 (2014).CrossRefGoogle Scholar
Benjamin, T.B., Ellis, A.T., Philos. Trans. R. Soc. Lond. A 260, 221 (1966).CrossRefGoogle Scholar
Vogel, A., Linz, N., Freidank, S., Paltauf, G., Phys. Rev. Lett. 100, 038102 (2008).CrossRefGoogle Scholar
Han, B., Kohler, K., Jungnickel, K., Mettin, R., Lauterborn, W., Vogel, A., J. Fluid Mech. 771, 706 (2015).CrossRefGoogle Scholar
Weninger, K.R., Camara, C.G., Putterman, S.J., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 016310 (2001).CrossRefGoogle Scholar
Noack, J., Vogel, A., Appl. Opt. 37, 4092 (1998).CrossRefGoogle Scholar
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D.X., Noojin, G.D., Rockwell, B.A., Birngruber, R., Appl. Phys. B 68, 271 (1999).CrossRefGoogle Scholar
Duvall, G.E., Fowles, G.R., in High Pressure Physics and Chemistry , Bradley, R.S., Ed. (Academic Press, New York, 1963), p. 209.Google Scholar
Duvall, G.E., Graham, R.A., Rev. Mod. Phys. 49, 523 (1977).CrossRefGoogle Scholar
Tinguely, M., Obreschkow, D., Kobel, P., Dorsaz, N., de Bosset, A., Farhat, M., Phys. Rev. E 86, 046315 (2012).CrossRefGoogle Scholar
Fujikawa, S., Akamatsu, T., J. Fluid Mech. 97, 481 (1980).CrossRefGoogle Scholar
Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, N., Lauterborn, W., Phys. Fluids 13, 2805 (2001).CrossRefGoogle Scholar
Hickling, R., Plesset, M.S., Phys. Fluids 7, 7 (1964).CrossRefGoogle Scholar
Koch, M., Lechner, C., Reuter, F., Kohler, K., Mettin, R., Lauterborn, W., Comput. Fluids 126, 71 (2016).CrossRefGoogle Scholar
Lin, C.P., Kelly, M.W., Appl. Phys. Lett. 72, 2800 (1998).CrossRefGoogle Scholar
Lapotko, D., Opt. Express 17, 2538 (2009).CrossRefGoogle Scholar
Siems, A., Weber, S.A.L., Boneberg, J., Plech, A., New J. Phys. 13, 043018 (2011).CrossRefGoogle Scholar
Kotaidis, V., Plech, A., Appl. Phys. Lett. 87, 213102 (2005).CrossRefGoogle Scholar
Boulais, E., Lachaine, R., Meunier, M., Nano Lett . 12, 4763 (2012).CrossRefGoogle Scholar
Xiong, R.H., Raemdonck, K., Peynshaert, K., Lentacker, I., De Cock, I., Demeester, J., De Smedt, S.C., Skirtach, A.G., Braeckmans, K., ACS Nano 8, 6288 (2014).CrossRefGoogle Scholar
Rudnitzki, F., Feineis, S., Rahmanzadeh, R., Endl, E., Lutz, J., Groll, J., Huttmann, G., J. Biophotonics 11, 201700329 (2018).CrossRefGoogle Scholar
Yao, C.P., Qu, X.C., Zhang, Z.X., Huttmann, G., Rahmanzadeh, R., J. Biomed. Opt. 14, 054034 (2009).CrossRefGoogle Scholar
Wilson, A., Mazzaferri, J., Bergeron, E., Patskovsky, S., Marcoux-Valiquette, P., Costantino, S., Sapieha, P., Meunier, M., Nano Lett. 18, 6981 (2018).CrossRefGoogle Scholar
Plech, A., Ibrahimkutty, S., Reich, S., Newby, G., Nanoscale 9, 17284 (2017).CrossRefGoogle Scholar
Krawinkel, J., Richter, U., Torres-Mapa, M.L., Westermann, M., Gamrad, L., Rehbock, C., Barcikowski, S., Heisterkamp, A., J. Nanobiotechnol. 14, 10.1186 (2016).CrossRefGoogle Scholar
Lombard, J., Biben, T., Merabia, S., Nanoscale 8, 14870 (2016).CrossRefGoogle Scholar
Neumann, J., Brinkmann, R., Appl. Phys. Lett. 93, 033901 (2008).CrossRefGoogle Scholar
Tomko, J., Naddeo, J.J., Jimenez, R., Tan, Y., Steiner, M., Fitz-Gerald, J.M., Bubb, D.M., O’Malley, S.M., Phys. Chem. Chem. Phys. 17, 16327 (2015).CrossRefGoogle Scholar
Lam, J., Lombard, J., Dujardin, C., Ledoux, G., Merabia, S., Amans, D., Appl. Phys. Lett. 108, 074104 (2016).CrossRefGoogle Scholar
Kohsakowski, S., Goekce, B., Tanabe, R., Wagener, P., Plech, A., Ito, Y., Barcikowski, S., Phys. Chem. Chem. Phys. 18, 16585 (2016).CrossRefGoogle Scholar
Reich, S., Schoenfeld, P., Wagener, P., Letzel, A., Ibrahimkutty, S., Goekce, B., Barcikowski, S., Menzel, A., Rolo, T.D., Plech, A., J. Colloid Interface Sci. 489, 106 (2017).CrossRefGoogle Scholar
Zeng, Q.Y., Gonzalez-Avila, S.R., Dijkink, R., Koukouvinis, P., Gavaises, M., Ohl, C.D., J. Fluid Mech. 846, 341 (2018).CrossRefGoogle Scholar
Dabir-Moghaddam, N., Liu, Z., Wu, B.X., J. Appl. Phys. 121, 044908 (2017).CrossRefGoogle Scholar
Hupfeld, T., Laurens, G., Amans, D., Barcikowski, S., Goekce, B., “Influence of Wettability and High Viscosity on the Cavitation Bubble Dynamics during Pulsed Laser Ablation in Liquid,” in Proc. 5th Conf. Adv. Nanoparticle Gener. Excitation by Lasers in Liquids, Amans, D., Ed. (University Lyon, France), p. 15, http://angel-conference.org/en/pages/angel-2018-program.ANGEL 2018 Program, p. 15, http://angel-conference.org/en/pages/angel-2018-program.Google Scholar
Lauer, E., Hu, X.Y., Hickel, S., Adams, N.A., Comput. Fluids 69, 1 (2012).CrossRefGoogle Scholar
Lechner, C., Koch, M., Lauterborn, W., Mettin, R., J. Acoust. Soc. Am. 142, 3649 (2017).CrossRefGoogle Scholar
Lauterborn, W., Lechner, C., Koch, M., Mettin, R., IMA J. Appl. Math. 83, 556 (2018).CrossRefGoogle Scholar
Vogel, A., Lauterborn, W., Appl. Opt. 27, 1869 (1988).CrossRefGoogle Scholar
Kroninger, D., Kohler, K., Kurz, T., Lauterborn, W., Exp. Fluids 48, 395 (2010).CrossRefGoogle Scholar
Reuter, F., Gonzalez-Avila, S.R., Mettin, R., Ohl, C.D., Phys. Rev. Fluids 2, 064202 (2017).CrossRefGoogle Scholar
Xu, H., Zeiger, B.W., Suslick, K.S., Chem. Soc. Rev. 42, 2555 (2013).CrossRefGoogle Scholar
Bang, J.H., Suslick, K.S., Adv. Mater. 22, 1039 (2010).CrossRefGoogle Scholar
Shchukin, D.G., Radziuk, D., Möhwald, H., Annu. Rev. Mater. Res. 40, 345 (2010).CrossRefGoogle Scholar
Suslick, K.S., Price, G.J., Annu. Rev. Mater. Res. 29, 295 (1999).Google Scholar
Xu, H., Eddingsaas, N.C., Suslick, K.S., J. Am. Chem. Soc. 131, 6060 (2009).CrossRefGoogle Scholar
Shih, C.Y., Shugaev, M.V., Wu, C.P., Zhigilei, L.V., J. Phys. Chem. C 121, 16549 (2017).CrossRefGoogle Scholar
Shih, C.Y., Streubel, R., Heberle, J., Letzel, A., Shugaev, M.V., Wu, C.P., Schmidt, M., Goekce, B., Barcikowski, S., Zhigilei, L.V., Nanoscale 10, 6900 (2018).CrossRefGoogle Scholar
Suslick, K.S., Choe, S.B., Cichowlas, A.A., Grinstaff, M.W., Nature 353, 414 (1991).CrossRefGoogle Scholar
Flannigan, D.J., Hopkins, S.D., Suslick, K.S., J. Organomet. Chem. 690, 3513 (2005).CrossRefGoogle Scholar
Oxley, J.D., Prozorov, T., Suslick, K.S., J. Am. Chem. Soc. 125, 11138 (2003).CrossRefGoogle Scholar
Suslick, K.S., Fang, M., Hyeon, T., J. Am. Chem. Soc. 118, 11960 (1996).CrossRefGoogle Scholar
Grinstaff, M.W., Cichowlas, A.A., Choe, S.B., Suslick, K.S., Ultrasonics 30, 168 (1992).CrossRefGoogle Scholar
Mdleleni, M.M., Hyeon, T., Suslick, K.S., J. Am. Chem. Soc. 120, 6189 (1998).CrossRefGoogle Scholar
Hyeon, T., Fang, M., Suslick, K.S., J. Am. Chem. Soc. 118, 5492 (1996).CrossRefGoogle Scholar
Cau, C., Nikitenko, S.I., Ultrason. Sonochem. 19, 498 (2012).CrossRefGoogle Scholar
Baigent, C.L., Müller, G., Experientia 36, 472 (1980).CrossRefGoogle Scholar
Alavi, M.A., Morsali, A., Ultrason. Sonochem. 17, 441 (2010).CrossRefGoogle Scholar
Alavi, M.A., Morsali, A., Ultrason. Sonochem. 17, 132 (2010).CrossRefGoogle Scholar
Salavati-Niasari, M., Javidi, J., Davar, F., Ultrason. Sonochem. 17, 870 (2010).CrossRefGoogle Scholar
Ghanbari, D., Salavati-Niasari, M., Ghasemi-Kooch, M., J. Ind. Eng. Chem. 20, 3970 (2014).CrossRefGoogle Scholar
Nagvenkar, A.P., Deokar, A., Perelshtein, I., Gedanken, A., J. Mater. Chem. B 4, 2124 (2016).CrossRefGoogle Scholar
Vabbina, P.K., Kaushik, A., Pokhrel, N., Bhansali, S., Pala, N., Biosens. Bioelectron. 63, 124 (2015).CrossRefGoogle Scholar
Singh, G., Joyce, E.M., Beddow, J., J Mason, T., J. Microbiol. Biotechnol. Food Sci. 2, 106 (2012).Google Scholar
Gottesman, R., Shukla, S., Perkas, N., Solovyov, L.A., Nitzan, Y., Gedanken, A., Langmuir 27, 720 (2011).CrossRefGoogle Scholar
Abramova, A., Gedanken, A., Popov, V., Ooi, E.-H., Mason, T.J., Joyce, E.M., Beddow, J., Perelshtein, I., Bayazitov, V., Mater. Lett. 96, 121 (2013).CrossRefGoogle Scholar
Neelakantan, N.K., Weisensee, P.B., Overcash, J.W., Torrealba, E.J., King, W.P., Suslick, K.S., RSC Adv . 5, 69243 (2015).CrossRefGoogle Scholar
Skrabalak, S.E., Phys. Chem. Chem. Phys. 11, 4930 (2009).CrossRefGoogle Scholar
Guo, J., Zhu, S., Chen, Z., Li, Y., Yu, Z., Liu, Q., Li, J., Feng, C., Zhang, D., Ultrason. Sonochem. 18, 1082 (2011).CrossRefGoogle Scholar
Cui, Y., Zhou, D., Sui, Z., Han, B., Chin. J. Chem. 33, 119 (2014).CrossRefGoogle Scholar
Zhu, S., Guo, J., Dong, J., Cui, Z., Lu, T., Zhu, C., Zhang, D., Ma, J., Ultrason. Sonochem. 20, 872 (2013).CrossRefGoogle Scholar
Krishnamoorthy, K., Kim, G.-S., Kim, S.J., Ultrason. Sonochem. 20, 644 (2013).CrossRefGoogle Scholar
Xu, H., Suslick, K.S., J. Am. Chem. Soc. 133, 9148 (2011).CrossRefGoogle Scholar
Jeong, S.-H., Ko, J.-H., Park, J.-B., Park, W., J. Am. Chem. Soc. 126, 15982 (2004).CrossRefGoogle Scholar
Ha, H., Jeong, S.-H., Korean J. Chem. Eng. 33, 401 (2016).CrossRefGoogle Scholar
Wei, K., Li, J., Ge, Z., You, Y., Xu, H., RSC Adv . 4, 52230 (2014).CrossRefGoogle Scholar
Rehbock, C., Jakobi, J., Gamrad, L., van der Meer, S., Tiedemann, D., Taylor, U., Kues, W., Rath, D., Barcikowski, S., Beilstein J. Nanotechnol. 5, 1523 (2014).CrossRefGoogle Scholar
Zhang, D.S., Liu, J., Li, P.F., Tian, Z.F., Liang, C.H., ChemNanoMat 3, 512 (2017).CrossRefGoogle Scholar
Streubel, R., Barcikowski, S., Goekce, B., Opt. Lett. 41, 1486 (2016).CrossRefGoogle Scholar
Jendrzej, S., Gokce, B., Epple, M., Barcikowski, S., ChemPhysChem 18, 1012 (2017).CrossRefGoogle Scholar
Hupfeld, T., Laumer, T., Stichel, T., Schuffenhauer, T., Heberle, J., Schmidt, M., Barcikowski, S., Goekce, B., Procedia CIRP 74, 244 (2018).CrossRefGoogle Scholar
Donate-Buendia, C., Fromel, F., Wilms, M.B., Streubel, R., Tenkamp, J., Hupfeld, T., Nachev, M., Goekce, E., Weisheit, A., Barcikowski, S., Walther, F., Schleifenbaum, J.H., Goekce, B., Mater. Des. 154, 360 (2018).CrossRefGoogle Scholar
Zhang, D.S., Liu, J., Liang, C.H., Sci. China Phys. Mech. 60, 074201 (2017).CrossRefGoogle Scholar
Ibrahimkutty, S., Wagener, P., Rolo, T.D., Karpov, D., Menzel, A., Baumbach, T., Barcikowski, S., Plech, A., Sci. Rep. 5, 16313 (2015).CrossRefGoogle Scholar
Kohsakowski, S., Santagata, A., Dell’Aglio, M., de Giacomo, A., Barcikowski, S., Wagener, P., Goekce, B., Appl. Surf. Sci. 403, 487 (2017).CrossRefGoogle Scholar
Reich, S., Goettlicher, J., Letzel, A., Goekce, B., Barcikowski, S., dos Santos Rolo, T., Baumbach, T., Plech, A., Appl. Phys. A 124, 71, (2018), doi:10.1007/s00339.CrossRefGoogle Scholar
Shih, C.Y., Wu, C.P., Shugaev, M.V., Zhigilei, L.V., J. Colloid Interface Sci. 489, 3 (2017).CrossRefGoogle Scholar
Vogel, A., Venugopalan, V., Chem. Rev. 103, 577 (2003).CrossRefGoogle Scholar
Letzel, A., Reich, S., dos Santos Rolo, T., Kanitz, A., Hoppius, J., Rack, A., Olbinado, M., Ostendorf, A., Goekce, B., Plech, A., Barcikowski, S., Langmuir 35, 3038 (2019).CrossRefGoogle Scholar
Zhigilei, L.V., Leveugle, E., Garrison, B.J., Yingling, Y.G., Zeifman, M.I., Chem. Rev. 103, 321 (2003).CrossRefGoogle Scholar
Ibrahimkutty, S., Wagener, P., Menzel, A., Plech, A., Barcikowski, S., Appl. Phys. Lett. 101, 103104 (2012).CrossRefGoogle Scholar
Wagener, P., Ibrahimkutty, S., Menzel, A., Plech, A., Barcikowski, S., Phys. Chem. Chem. Phys. 15, 3068 (2013).CrossRefGoogle Scholar
Reich, S., Letzel, A., Menzel, A., Kretschmar, N., Goekce, B., Barcikowski, S., Plech, A., Nanoscale 11, 6962 (2019).CrossRefGoogle Scholar
Letzel, A., Goekce, B., Wagener, P., Ibrahimkutty, S., Menzel, A., Plech, A., Barcikowski, S., J. Phys. Chem. C 121, 5356 (2017).CrossRefGoogle Scholar
Marzun, G., Bonnemann, H., Lehmann, C., Spliethoff, B., Weidenthaler, C., Barcikowski, S., ChemPhysChem 18, 1175 (2017).CrossRefGoogle Scholar
Barmina, E.V., Gudkov, S.V., Simakin, A.V., Shafeev, G.A., J. Laser Micro/Nanoeng. 12, 254 (2017).Google Scholar
Kalus, M.R., Barsch, N., Streubel, R., Goekce, E., Barcikowski, S., Goekce, B., Phys. Chem. Chem. Phys. 19, 7112 (2017).CrossRefGoogle Scholar
Lam, J., Amans, D., Chaput, F., Diouf, M., Ledoux, G., Mary, N., Masenelli-Varlot, K., Motto-Ros, V., Dujardin, C., Phys. Chem. Chem. Phys. 16, 963 (2014).CrossRefGoogle Scholar
Kohsakowski, S., Streubel, R., Radev, I., Peinecke, V., Barcikowski, S., Marzun, G., Reichenberger, S., Appl. Surf. Sci. 467, 486 (2019).CrossRefGoogle Scholar
Dong, W.W., Reichenberger, S., Chu, S., Weide, P., Ruland, H., Barcikowski, S., Wagener, P., Muhler, M., J. Catal. 330, 497 (2015).CrossRefGoogle Scholar
Haxhiaj, I., Tigges, S., Firla, D., Zhang, X.R., Hagemann, U., Kondo, T., Nakamura, J., Marzun, G., Barcikowski, S., Appl. Surf. Sci. 469, 811 (2019).CrossRefGoogle Scholar
Waag, F., Goekce, B., Kalapu, C., Bendt, G., Salamon, S., Landers, J., Hagemann, U., Heidelmann, M., Schulz, S., Wende, H., Hartmann, N., Behrens, M., Barcikowski, S., Sci. Rep. 7, 13161 (2017).CrossRefGoogle Scholar