Skip to main content Accessibility help
×
Home

Materials Science of High-Level Nuclear Waste Immobilization

  • William J. Weber, Alexandra Navrotsky, Sergey Stefanovsky, Eric R. Vance and Etienne Vernaz...

Abstract

With the increasing demand for the development of nuclear power comes the responsibility to address the issue of waste, including the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of highlevel nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

Copyright

References

Hide All
1 Cohen, B.L., Rev. Mod. Phys. 49, 1 (1977).
2 Ewing, R.C., MRS Bull. 33, 338 (2008).
3 Lutze, W., Ewing, R.C., Radioactive Waste Forms for the Future (North Holland, Amsterdam, 1988).
4 Mueller, I., Weber, W.J., MRS Bull. 26, 698 (2001).
5 Paul, A., Chemistry of Glasses (Chapman & Hall, New York, ed. 2, 1990).
6 Grambow, B., Elements 2, 357 (2006).
7 Stefanovsky, S.V., Yudintsev, S.V., Gierè, R., Lumpkin, G.R., in Energy, Waste, and the Environment: A Geochemical Perspective, Gierè, R., Stille, P., Eds. (Special Publication 236, Geological Society of London, London, 2004), p. 37.
9 McCarthy, G.J., Nucl. Technol. 32, 92 (1977).
10 Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W.O., Major, A., Geochem. J. 13, 141 (1979).
11 Ringwood, A.E., Oversby, V.M., Kesson, S.E., Sinclair, W., Ware, N., Hibberson, W., Major, A., Nucl. Chem. Waste Manage. 2, 287 (1981).
12 Ringwood, A.E., Am. Sci. 70, 201 (1982).
13 Kesson, S.E., Sinclair, W.J., Ringwood, A.E., Nucl. Chem. Waste Manage. 4, 259 (1983).
14 Newkirk, H.W., Hoenig, C.L., Ryerson, F.L., Tewhey, J.D., Smith, G.S., Rossington, C.S., Brackmann, A.J., Ringwood, A.E., Ceram. Bull. 61, 559 (1982).
15 Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., Weinberg, M.C., J. Mater. Res. 12, 1946 (1997).
16 Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).
17 Ewing, R.C., Weber, W.J., Lian, J., J. Appl. Phys. 95, 5949 (2004).
18 Lumpkin, G.R., Elements 2, 365 (2006).
19 Urusov, V.S., Organova, N.I., Karimova, O.V., Yudintsev, S.V., Stefanovsky, S.V., Trans. (Dokl.) Russ. Acad. Sci./Earth Sci. Sec. 401, 319 (2005).
20 Yudintsev, S.V., Stefanovsky, S.V., Ewing, R.C., in Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., Tananaev, I.V., Eds. (Elsevier, Amsterdam, 2007), p. 457.
21 Burakov, B.E., Anderson, E.B., Knecht, D.A., Zamoryanskaya, M.A., Strykanova, E.E., Yagovkina, M.A., “Synthesis of Garnet/Perovskite-Based Ceramic for the Immobilization of Pu-Residue Wastes,” in Mater. Res. Soc. Symp. Proc. 556, Wronkiewicz, D.J., Lee, J.H., Eds. (Materials Research Society, Warrendale, PA, 1999), p. 55.
22 Hayward, P.J., in Radioactive Waste Forms for the Future, Lutze, W., Ewing, R.C., Eds. (North Holland, Amsterdam, 1988), chap. 7, p. 427.
23 , A.K., Luckscheiter, F., Lutze, W., Malow, G., Schiewer, E., Am. Ceram. Soc. Bull. 55, 500 (1976).
24 Martin, C., Ribet, I., Frugier, P., Gin, S., J. Nucl. Mater. 366, 277 (2007).
25 Strachan, D.M., Schulz, W.W., Ceram. Bull. 58, 865 (1979).
26 Gallagher, S.A., McCarthy, G.J., Pfoertsch, D.E., Am. Ceram. Soc. Bull. 55, 461 (1976).
27 Chartier, A., Meis, C., Gale, J.D., Phys. Rev. B 64, 085110 (2001).
28 Balmer, M.L., Huang, Q., Wong-Ng, W., Roth, R.S., Santoro, A., J. Solid State Chem. 130, 97 (1997).
29 He, Y., Bao, W., Song, C., J. Nucl. Mater. 305, 202 (2002).
30 Helean, K.B., Navrotsky, A., Vance, E.R., Carter, M.L., Ebbinghaus, B., Krikorian, O., Kian, J., Wang, L.M., Catalano, J.G., J. Nucl. Mater. 303, 226 (2002).
31 Hughes Kubatko, K.-A., Helean, K.B., Navrotsky, A., Burns, P.C., Science 302, 1191 (2003).
32 Hughes Kubatko, K.-A., Helean, K.B., Navrotsky, A., Burns, P.C., Am. Mineral. 90, 1284 (2005).
33 Kubatko, K.-A., Helean, K.B., Navrotsky, A., Burns, P.C., Am. Mineral. 91, 658 (2006).
34 Helean, K.B., Ushakov, S.V., Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M., Boatner, L.A., J. Solid State Chem. 177, 1858 (2004).
35 Helean, K.B., Navrotsky, A., Lian, J., Ewing, R.C., “Correlation of formation enthalpies with critical amorphization temperature for pyrochlore and monazite,” in Mater. Res. Soc. Symp. Proc. 824, Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., Eds. (Materials Research Society, Warrendale, PA, 2004), p. 279.
36 Xu, H., Navrotsky, A., Nyman, M.D., Nenoff, T.M., J. Mater. Res. 15, 815 (2000).
37 Xu, H., Navrotsky, A., Nyman, M.D., Nenoff, T.M., J. Mater. Res. 20, 618 (2005).
38 Gray, W.J., Nature 296, 547 (1982).
39 Vance, E.R., Roy, R., Pepin, J.G., Agrawal, D.K., J. Mater. Sci. 17, 947 (1982).
40 Vernaz, E., Loida, A., Malow, G., Marples, J.A.C., Matzke, Hj., in Proc. 3rd EC Conf. on Radioactive Waste Management and Disposal, Cecille, L., Ed. (Elsevier, London, 1991), p. 302.
41 Strachan, D.M., Scheele, R.D., Buck, E.C., Icenhower, J.P.. Kozelisky, A.E., Sell, R.L., Elovich, R.J., Buchmiller, W.C., J. Nucl. Mater. 345, 109 (2005).
42 Stefanovsky, S.V., Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., Yudintsev, S.V., “Alpha-Decay Damage in Murataite-Based Ceramics,” in Mater. Res. Soc. Symp. Proc. 1107, Lee, W.E., Roberts, J.W., Hyatt, N.C., Grimes, R.W., Eds. (Materials Research Society, Warrendale, PA, 2008), p. 389.
43 Malow, G., Marples, J.A.C., Sombret, C., in Radioactive Waste Management and Disposal, Simon, R., Orlowski, S., Eds. (Harwood Academic Publishers, Chur, Switzerland, 1980), p. 341.
44 Turcotte, R.P., Wald, J.W., Roberts, F.P., Rusin, J.M., Lutze, W., J. Am. Ceram. 65, 589 (1982).
45 Strachan, D.M., Scheele, R.D., Buck, E.C., Kozelisky, A.E., Sell, R.L., Elovich, R.J., Buchmiller, W.C., J. Nucl. Mater. 372, 16 (2008).
46 Burakov, B.E., Yagovkina, M.A., Garbuzov, V.M., Kitsay, A.A., Zirlin, V.A., “Self-Irradiation of Monazite Ceramics: Contrasting Behavior of PuPO4 and (La,Pu)PO4 Doped with Pu-238,” in Mater. Res. Soc. Symp. Proc. 824, Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., Eds. (Materials Research Society, Warrendale, PA, 2004), p. 219.
47 Weber, W.J., Devanathan, R., Meldrum, A., Boatner, L.A., Ewing, R.C., Wang, L.M., “The Effect of Temperature and Damage Energy on Amorphization in Zircon,” in Mater. Res. Soc. Symp. Proc. 540, Zinkle, S.J., Lucas, G.E., Ewing, R.C., Williams, J.S., Eds. (Materials Research Society, Warrendale, PA, 1999), p. 367.
48 Ewing, R.C., Meldrum, A., Wang, L.M., Weber, W.J., Corrales, L.R., Rev. Mineral. Geochem. 53, 387 (2003).
49 Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., Govidan, K.V. Kutty, J. Mater. Res. 14, 4470 (1999).
50 Weber, W.J., Ewing, R.C., Science 289, 2051 (2000).
51 Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., Hartman, T., Science 289, 748 (2000).
52 Weber, W.J., Ewing, R.C., Meldrum, A., J. Nucl. Mater. 250, 147 (1997).
53 Weber, W.J., Ewing, R.C., “Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides,” in Mater. Res. Soc. Symp. Proc. 713, McGrail, B.P., Cragnolino, G.A., Eds. (Materials Research Society, Warrendale, PA, 2002), p. 443.
54 Zhang, Y., Bae, I.-T., Weber, W.J., Nucl. Instrum. Methods B 266, 2828 (2008).
55 Wellman, D.M., Icenhower, J.P., Weber, W.J., J. Nucl. Mater. 340, 149 (2005).
56 Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., Mokhov, A.V., Perevalov, S.A., Stefanovsky, O.I., Ptashkin, A.G., “Phase Compositions and Leach Resistance of Actinide-Bearing Murataite Ceramics,” in Mater. Res. Soc. Symp. Proc. 893, Sarrao, J.L., Schwartz, A.J., Antonio, M.R., Burns, P.C., Haire, R.G., Nitsche, H., Eds. (Materials Research Society, Warrendale, PA, 2006), p. 429.
57 Stefanovsky, S.V., Yudintsev, S.V., Perevalov, S.A., Startseva, I.V., Varlakova, G.A., J. Alloys Compd. 444–445, 618 (2007).
58 Yudintsev, S.V., Osherova, A.A., Dubinin, A.V., Zotov, A.V., Stefanovsky, S.V., “Corrosion Study of Actinide Waste Forms with Garnet-Type Structure,” in Mater. Res. Soc. Symp. Proc. 824, Hanchar, J.M., Stroes-Gascoyne, S., Browning, L., Eds. (Materials Research Society, Warrendale, PA, 2004), p. 287.
59 Ribet, S., Gin, S., J. Nucl. Mater. 324, 152 (2004).
60 Janney, D.E., “Host Phases for Actinide Elements in the Metallic Waste Form,” in Mater. Res. Soc. Symp. Proc. 757, Finch, R.J., Bullen, D.B., Eds. (Materials Research Society, Warrendale, PA, 2003), p. 343.

Materials Science of High-Level Nuclear Waste Immobilization

  • William J. Weber, Alexandra Navrotsky, Sergey Stefanovsky, Eric R. Vance and Etienne Vernaz...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed