Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T08:33:20.727Z Has data issue: false hasContentIssue false

Materials for Multiphoton 3D Microfabrication

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

Two-photon/multiphoton lithography (MPL) has emerged as a versatile technique for the fabrication of complex 3D polymeric, hybrid organic/inorganic, and metallic structures. This article reviews some recent advances in the development of molecules and materials that enable two-photon and multiphoton 3D micro- and nanofabrication. Materials that exhibit high sensitivity for the generation of reactive intermediates are described, as are various materials systems that enable functional devices to be made and in some cases enable structures to be replicated. The combination of advances illustrates the opportunities for MPL to have a significant impact in the areas of photonics, microelectromechanical systems, and biomedical technologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lewis, J.A., Gratson, G.M., Mater. Today 7 (7/8), 32 (2004); H.-B. Sun, S. Kawata, Adv. Poly. Sci. 170, 169 (2004).Google Scholar
2.Stute, U., Serbin, J., Kulik, C., Chichkov, B.N., Int. J. Mater. Prod. Tech. 21 (4), 273 (2004).CrossRefGoogle Scholar
3.Ostendorf, A., Chichkov, B.N., Photonics Spectra 40 (10), 72 (2006).Google Scholar
4.Tyagi, S. et al., IEEE Tech. Dig.—Int. Electron Dev. Meet. (2005) pp. 1070–1072.Google Scholar
5.Minelli, C. et al., Chimia 57 (10), 646 (2003).CrossRefGoogle Scholar
6.Dieckmann, G.R. et al., J. Am. Chem. Soc. 125 (7), 1770 (2003).Google Scholar
7.Daniel, M.-C., Astruc, D., Chem. Rev. 104 (1), 293 (2004).Google Scholar
8.Lin, S.Y. et al., Nature 394, 251 (1998).Google Scholar
9.Lewis, J.A., Adv. Funct. Mater. 16 (17), 2193 (2006).CrossRefGoogle Scholar
10.Zhang, X., Jiang, X.N., Sun, C., Sens. Actuators, A A77 (2), 149 (1999).Google Scholar
11.Moon, J.H., Ford, J., Yang, S., Polym. Adv. Tech. 17, 83 (2006).CrossRefGoogle Scholar
12.Denk, W., Strickler, J.H., Webb, W.W., Science 248, 73 (1990).Google Scholar
13.Strickler, J.H., Webb, W.W., Opt. Lett. 16, 1780 (1991).Google Scholar
14.Parthenopoulos, D.A., Rentzepis, P.M., Science 245, 843 (1989).CrossRefGoogle Scholar
15.Cumpston, B.H. et al., Nature 398, 51 (1999).CrossRefGoogle Scholar
16.Olson, C.E., Previte, M.J.R., Fourkas, J.T., Nature Mater. 1 (4), 225 (2002).Google Scholar
17.Kawata, S., Sun, H.B., Tanaka, T., Takada, K., Nature 412, 697 (2001).Google Scholar
18.Schafer, K.J. et al., J. Photochem. Photobiol., A 162 (2–3),497 (2004).CrossRefGoogle Scholar
19.Wang, I. et al., Opt. Lett. 27 (15), 1348 (2002).Google Scholar
20.Xu, C., Webb, W.W., J. Opt. Soc. Am. B: Opt. Phys. 13, 481 (1996). GM stands for Goeppert-Mayer units, named after the physicist Maria Goeppert-Mayer, who predicted two-photon absorption.Google Scholar
21.Albota, M. et al., Science 281, 1653 (1998); E. Zojer et al., J. Chem. Phys. 116, 3646 (2002); D. Beljonne et al., Adv. Funct. Mater. 12, 631 (2002).CrossRefGoogle Scholar
22.Serbin, J. et al., Opt. Lett. 28 (5), 301 (2003).Google Scholar
23.Coenjarts, C.A., Ober, C.K., Chem. Mater. 16 (26), 5556 (2004).Google Scholar
24.Nguyen, L.H., Straub, M., Gu, M., Adv. Funct. Mater. 15 (2), 209 (2005).CrossRefGoogle Scholar
25.Baldacchini, T., J. Appl. Phys. 95 (11), 6072 (2004).Google Scholar
26.Zhou, W. et al., Science 296, 1106 (2002).CrossRefGoogle Scholar
27.Yu, T. et al., Adv. Mater. 15 (6), 517 (2003).CrossRefGoogle Scholar
28.Stellacci, F. et al., Adv. Mater. 14 (3), 194 (2002).Google Scholar
29.Ishikawa, A., Tanaka, T., Kawata, S., Appl. Phys. Lett. 89 (11), 113101 (2006).Google Scholar
30.LaFratta, C.N. et al., Chem. Mater. 18 (8), 2038 (2006).Google Scholar
31.Kawata, S., Kawata, Y., Chem. Rev. 100 (5), 1777 (2000).Google Scholar
32.Corredor, C.C., Huang, Z.-L., Belfield, K.D., Adv. Mater. 18 (21), 2910 (2006).Google Scholar
33.Serbin, J., Gu, M., Opt. Express 14, 3565 (2006).Google Scholar
34.Galajda, P., Ormos, P., Appl. Phys. Lett. 78 (2), 249 (2001).Google Scholar
35.Maruo, S., Inoue, H., Appl. Phys. Lett. 89 (14), 144101 (2006).Google Scholar
36.Kuebler, S.M. et al., J. Photopolym. Sci. Technol. 14, 657 (2001).Google Scholar
37.Sun, H.-B., Matsuo, S., Misawa, H., Appl. Phys. Lett. 74 (6), 786 (1999).CrossRefGoogle Scholar
38.Serbin, J., Ovsianikov, A., Chichkov, B., Opt. Express 12 (21), 5221 (2004).CrossRefGoogle Scholar
39.Straub, M., Gu, M., Opt. Lett. 27 (20), 1824 (2002).Google Scholar
40.Tetreault, N. et al., Adv. Mater. 18 (4), 457 (2006).Google Scholar
41.Doraiswamy, A. et al., Acta Biomater. 2 (3), 267 (2006).Google Scholar
42.Farrer, R.A. et al., J. Am. Chem. Soc. 128 (6), 1796 (2006).Google Scholar
43.Dong, W., Perry, J.W., PMSE Preprints 94, 52 (2006).Google Scholar
44.LaFratta, C.N. et al., J. Phys. Chem. B 108 (31), 11256 (2004).Google Scholar
45.LaFratta, C.N., Li, L., Fourkas, J.T., Proc. Natl. Acad. Sci. USA 103 (23), 8589 (2006).Google Scholar