Skip to main content Accessibility help
×
Home

Materials Challenges for CdTe and CuInSe2 Photovoltaics

  • Joseph D. Beach and Brian E. McCandless

Abstract

The record laboratory cell (∼1 cm2 area) efficiency for thin-film cadmium telluride (CdTe) is 16.5%, and that for a copper indium diselenide (CuInSe2) thin-film alloy is 19.5%. Commercially produced CdTe and CuInSe2 modules (0.5–1 m2 area) have efficiencies in the 7–11% range. Research is needed both to increase laboratory cell efficiencies and to bring those small - area efficiencies to large-area production. Increases in laboratory CdTe cell efficiency will require increasing open-circuit voltage, which will allow cells to harvest more energy from each absorbed photon. This will require extending the minority carrier lifetime from its present τ ≤ 2 ns to τ ≥ 10 ns and increasing hole concentration in the CdTe beyond 1015 cm2, which appears to be limited by compensating defects. Increasing laboratory CuInSe2-based cell efficiency significantly beyond 19.5% will also require increasing the open-circuit voltage, either by increasing the bandgap, the doping level, or the minority carrier lifetime. The photovoltaic cells in commercial modules occupy tens of square centimeters, and both models and experiments have shown that low-performing regions in small fractions of a cell can significantly reduce the overall cell per formance. Increases in commercial module efficiency will require control of materials properties across large deposition areas in a high-throughput environment to minimize such non-uniformities. This article discusses approaches used and research needed to increase the ultimate efficiencies of CdTe- and CuInSe2-based devices and translate these gains to commercial photovoltaic modules.

Copyright

References

Hide All
1.Green, M.A., Emery, K., King, D.L., Hisikawa, Y., and Warta, W., Prog. Photovol. Res. Appl. 14 (1) (2006) p. 35.
2.Nell, M.E. and Barnett, A.M., IEEE Trans. Elec. Dev. ED34 (2) (1987) p. 257.
3.Wu, X., Sol. Energy 77 (2004) p. 803.
4.McCandless, B.E. and Sites, J.R., Handbook of Photovoltaic Science and Engineering, edited by Luque, A. and Hegedus, S. (John Wiley and Sons, 2003) p. 617.
5.McCandless, B.E. and Hegedus, S.S., Proc. 22nd IEEE PVSC (Las Vegas, 1991) p. 967.
6.McCandless, B.E., Mat. Res. Soc. Symp. Proc. 668 (2001) H1.6.1.
7.Moutinho, H.R., Al-Jassim, M.M., Levi, D.H., Pippo, P.C., and Kazmerski, L.L., J. Vac. Sci. Technol., A 16 (1998) p. 1251.
8.Wei, S.-H. and Zhang, S.B., Phys. Rev. B 66 155211–1 (2002).
9.Metzger, W.K., Albin, D., Levi, D., Sheldon, P., Li, X., Keyes, B.M., and Ahrenkiel, R.K., J. Appl. Phys. 94 (2003) p. 3549.
10.Kaydanov, V.I. and Ohno, T.R., National Renewable Energy Laboratory Final Technical Report SR-520–31777 (2002).
11.Phillips, J.E., Birkmire, R.W., McCandless, B.E., Meyers, P.V., and Shafarman, W.N., Phys. Status Solidi B 194 (1996) p. 31.
12.Mickelsen, R. and Chen, W., Conf. Rec. 15th IEEE PVSC (1981) p. 800.
13.Contreras, M.A., Ramanathan, K., Abushama, J., Hasoon, F., Young, D.L., Egaas, B., and Noufi, R., Prog. Photovolt. Res. Appl. 13 (3) (2005) p. 209.
14.Klenk, R., Bakehe, S., Kaigawa, R., Neisser, A., Reis, J., and Lux-Steiner, M.Ch., Thin Solid Films 451–452 (2004) p. 424.
15.Romeo, A., Terheggen, M., Abou-Ras, D., Batzner, D.L., Haug, F.-J., Kalin, M., Rudman, D., and Tiwari, A.N., Prog. Photovolt. Res. Appl. 12 (2–3) (2004) p. 93.
16.Wada, T., Kohara, N., Negami, T., and Nishitani, M., J. Appl. Phys. 35 (1996) L1253.
17.Bar, M., Weinhardt, L., Heske, C., Muffler, H.-J., Lux-Steiner, M.C., Umbach, E., and Fisher, Ch.-H., Prog. Photovolt. Res. Appl. 13 (7) (2005) p. 571.
18.Wang, L., et al., Mat. Res. Soc. Symp. Proc. 569 (1999) p. 127.
19.Johnson, P.K., Heath, J.T., Cohen, J.D., Ramanathan, K., and Sites, J.R., Prog. Photovolt. Res. Appl. 13 (7) (2005) 579.
20.Persson, C., Zhao, Y.-J., Lany, S., and Zunger, A., Phys. Rev. B 72 035211–1 (2005).

Related content

Powered by UNSILO

Materials Challenges for CdTe and CuInSe2 Photovoltaics

  • Joseph D. Beach and Brian E. McCandless

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.