Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T00:54:38.244Z Has data issue: false hasContentIssue false

LiNbO3: A Paradigm for Photorefractive Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Lithium niobate (LiNbO3) is a paradigmatic photorefractive (PR) material. It provided the first experimental evidence of the PR effect and still maintains a key position in the field. This position is fostered by the fact that large congruent single crystals with good optical quality are routinely grown, enabling technological applications. A remarkable example, a PR narrow-band interference filter has recently been developed and put on the market.

A relevant property of LiNbO3, the high electrooptic figure of merit, n3r, assures efficient PR performance. Another unique feature is the occurrence of a bulk photovoltaic (PV) effect, i.e., the generation of a voltage (in an open circuit) or a current (in a short circuit) as a consequence of homogeneous illumination. The bulk PV effect acts, in a way, like an internal electric field, enhancing the PR effect. On the other hand, thermal fixing or stabilization of PR gratings has been successfully accomplished through an interplay between proton and electron dynamics. LiNbO3 is also the choice substrate for the commercial fabrication of waveguide devices such as modulators, wavelength filters, multiplexers, and demultiplexers. Moreover, lasing action as well as nonlinear effects have been achieved due to the marked inhibition of the PR effect caused by heavy Mg doping. This illustrates the intimate connection between PR behavior and defect structure, i.e., between optics and materials science.

Type
Photorefractive Materials
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Günter, P., Phys. Rep. 93 (1982) p. 199.CrossRefGoogle Scholar
2.Electrooptic and Photorefractive Materials, edited by Günter, P. (Springer-Verlag, Berlin, 1986).Google Scholar
3.Ashkin, A., Boyd, G.D., Dziedzik, J.M., Smith, R.G., Ballman, A.A., and Nassau, K., Appl. Phys. Lett. 9 (1966) p. 72.CrossRefGoogle Scholar
4.Rakuljic, G.A. and Leyva, V., Opt. Lett. 18 (1993) p. 459.CrossRefGoogle Scholar
5.Müller, R., Santos, M.T., Arizmendi, L., and Cabrera, J.M., Appl. Phys. (in press).Google Scholar
6.Properties of LiNbO3, EMIS Datareview Series, No. 5, INSPEC, London (1989).Google Scholar
7.Fridkin, V.M., Ferroelectrics 53 (1984) p. 168.CrossRefGoogle Scholar
8.Tamir, T., Integrated Optics, Topics in Applied Physics, Vol. 7 (Springer-Verlag, Berlin, 1975, 1982).Google Scholar
9.Thylen, L., J. Lightwave Technol. 6 (1988) p. 847.CrossRefGoogle Scholar
10.Fan, T.Y., Cordova-Plaza, A., Digonnet, M.J.F., Byer, R.L., and Shaw, H.J., J. Opt. Soc. Am. B 3 (1986) p. 140.CrossRefGoogle Scholar
11.Nightingale, J.L., Silva, W.J., Reade, G.E., Rybick, A., Korlovki, W.J., and Byer, R.L., SPIE 681 (1986) p. 20.Google Scholar
12.Bryan, D.A., Gerson, R., and Tomaschke, H.E., Appl. Phys. Lett. 44 (1984) p. 847.CrossRefGoogle Scholar
13.Agulló-López, F., Ferroelectrics 91 (1989) p. 227.CrossRefGoogle Scholar
14.Solé, J. García, Macalik, B., Bausá, L.E., Cussó, F., Camarillo, E., Lorenzo, A., Nuñez, L., Jaque, F., Monteil, A., Boulon, G., Santiuste, J.E. Muñoz, and Vergara, I., J. Electrochem. Soc. 140 (1993) p. 2010.CrossRefGoogle Scholar
15.Rebouta, L., Soares, J.C., da Silva, M.F., Sanz-Garcia, J.A., Dieguez, E., and Agulló-López, F., J. Mater. Res. 7 (1992) p. 130.CrossRefGoogle Scholar
16.Rebouta, L., Smulders, P.J.M., Boerma, D.O., Agulló-López, F., da Silva, M.F., and Soares, J.C., Phys. Rev. 48 (1993) p. 3600.CrossRefGoogle Scholar
17.Amodei, J.J., Phillips, W., and Staebler, D.L., Appl. Opt. 11 (1972) p. 390.CrossRefGoogle Scholar
18.Weis, R.S. and Gaylord, T.K., Appl. Phys. A37 (1985) p. 191.CrossRefGoogle Scholar
19.Abrahams, S.C., Ready, J.M., and Bernstein, J.L., J. Phys. Chem. Solids 27 (1966) p. 997.CrossRefGoogle Scholar
20.Bordui, P.F., Norwood, R.G., Bird, C.D., and Calvert, G.D., J. Cryst. Growth 113 (1991) p. 61.CrossRefGoogle Scholar
21.Malovichko, G.I., Grachev, V.G., Kokanyan, E.P., Schirmer, O.F., Betzler, K., Gather, B., Jermann, F., Klauer, S., Schlarb, U., and Wöhlecke, M., Appl. Phys. A 56 (1993) p. 103.CrossRefGoogle Scholar
22.Abrahams, S.C. and Marsh, P., Acta Crystallogr. Sec. B42 42 (1986) p. 6.Google Scholar
23.Földvari, I., Polgár, K., Voszka, R., and Balasanyan, R.N., Cryst. Res. Technol. 19 (1984) p. 1659.CrossRefGoogle Scholar
24.Kaminow, I.P., An Introduction to Electrooptic Devices (Academic Press, New York, 1974).Google Scholar
25.Glass, A.M., von der Linde, D., and Negran, T.J., Appl. Phys. 8 (1975) p. 85.Google Scholar
26.García-Cabañes, A. and Cabrera, J.M., J. Phys. Conden. Matter 5 (1993) p. 2267.CrossRefGoogle Scholar
27.Carrascosa, M., Cabrera, J.M., and Agulló-López, F., IEEE J. Quantum Electron. QE-27 (1991) p. 509.CrossRefGoogle Scholar
28.Arizmendi, L., Cabrera, J.M., and Agulló-López, F., J. Phys. C 17 (1984) p. 515.Google Scholar
29.Hodgson, E.R. and Agulló-López, F., Solid State Comntun. 64 (1987) p. 965.CrossRefGoogle Scholar
30.Baquedano, J., Carrascosa, M., Arizmendi, L., and Cabrera, J.M., J. Opt. Soc. Am. B 3 (1987) p. 309.CrossRefGoogle Scholar
31.Chen, F.S., LaMacchia, J.T., and Fraser, D.B., Appl. Phys. Lett. 13 (1968) p. 223.CrossRefGoogle Scholar
32.Phillips, W., Amodei, J.J., and Staebler, D.L., RCA Rev. 33 (1972) p. 94.Google Scholar
33.Staebler, D.L. and Phillips, W., Appl. Opt. 13 (1974) p. 788.CrossRefGoogle Scholar
34.Staebler, D.L., Burke, W.J., Phillips, W., and Amodei, J.J., Appl. Phys. Lett. 26 (1975) p. 182.CrossRefGoogle Scholar
35.Kurz, H., Opt. Acta 24 (1977) p. 463.CrossRefGoogle Scholar
36.Mok, F.H., Tackitt, M.C., and Stoll, H.M., Opt. Lett. 16 (1991) p. 605.CrossRefGoogle Scholar
37.Tao, S., Selviah, D.R., and Midwinter, J.E., Opt. Lett. 18 (1993) p. 912.CrossRefGoogle Scholar
38.Mok, F.H., in Reference 4, p. 915.Google Scholar
39.Amodei, J.J. and Staebler, D.L., Appl. Phys. Lett. 18 (1971) p. 540.CrossRefGoogle Scholar
40.Arizmendi, L., J. Appl. Phys. 65 (1989) p. 423.CrossRefGoogle Scholar
41.Montemezzani, G. and Günter, P., J. Opt. Soc. Am. B 7 (1990) p. 2323.CrossRefGoogle Scholar
42.Kirillov, D. and Feinberg, J., Opt. Lett. 16 (1991) p. 1520.CrossRefGoogle Scholar
43.Micheron, F. and Bismuth, G., Appl. Phys. Lett. 20 (1972) p. 79.CrossRefGoogle Scholar
44.Micheron, F. and Bismuth, G., Appl. Phys. Lett. 23 (1973) p. 71.CrossRefGoogle Scholar
45.Micheron, F. and Trotier, J., Ferroelectrics 8 (1974) p. 441.CrossRefGoogle Scholar
46.Leyva, V., Agranat, A., and Yariv, A., Opt. Lett. 16 (1991) p. 554.CrossRefGoogle Scholar
47.Staebler, D.L. and Amodei, J.J., Ferroelectrics 3 (1972) p. 107.CrossRefGoogle Scholar
48.Vormann, H., Weber, G., Kapphan, S., and Krätzig, E., Solid State Commun. 40 (1981) p. 543.CrossRefGoogle Scholar
49.Kovács, L. and Földvàri, I., in Properties of Lithium Niobate, EMIS Datareviews Series No. 5 (INSPEC, London, 1989) p. 189.Google Scholar
50.Arizmendi, L., Townsend, P.D., Carrascosa, M., Baquedano, J.A., and Cabrera, J.M., J. Phys. Conden. Matter 3 (1991) p. 5399.CrossRefGoogle Scholar
51.Sommerfeldt, R., Rupp, R.A., Vormann, H., and Krätzig, E., Phys. Status Solidi A 99 (1987) p. K15.CrossRefGoogle Scholar
52.Hertel, P., Rinhofer, K.H., and Sommerfeldt, R., Phys. Status Solidi A 104 (1987) p. 855.CrossRefGoogle Scholar
53.Carrascosa, M. and Agulló-López, F., J. Opt. Soc. Am. B 7 (1990) p. 2317.CrossRefGoogle Scholar
54.Muller, R., Arizmendi, L., Carrascosa, M., and Cabrera, J.M., Appl. Phys. Lett. 60 (1992) p. 3212.CrossRefGoogle Scholar
55.Carrascosa, M. and Arizmendi, L., J. Appl. Phys. 73 (1993) p. 2709.CrossRefGoogle Scholar
56.Glass, A.M., Opt. Eng. 17 (1978) p. 470.CrossRefGoogle Scholar
57.Zhong, G-G., Jian, J., and Wu, Z-K., 11th Int. Quantum Electronics Conference, IEEE Cat. No. 80CH1561-0 (1980) p. 631.Google Scholar
58.Arizmendi, L. and Powell, R.C., J. Appl. Phys. 61 (1987) p. 2128.CrossRefGoogle Scholar
59.Sommerfeldt, R., Holtmann, L., Krätzig, E., and Grabmaier, B.C., Phys. Status Solidi A 106 (1988) p. 89.CrossRefGoogle Scholar
60.Sommerfeldt, R., Holtman, L., Krätzig, E., and Grabmaier, B.C., Ferroelectrics 92 (1989) p. 219.CrossRefGoogle Scholar
61.Arizmendi, L., Kliewer, M.J., and Powell, R.C., J. Appl. Phys. 61 (1987) p. 1682.CrossRefGoogle Scholar
62.Huafu, W., Guotong, S., and Zhongkang, W., Phys. Status Solidi A 89 (1985) p. K211.CrossRefGoogle Scholar
63.Bryan, D.A., Rice, R.R., Gerson, R., Tomaschke, H.E., Sweeney, K.L., and Halliburton, L.E., Opt. Eng. 24 (1985) p. 138.CrossRefGoogle Scholar
64.Volk, T.R., Ivanov, M.A., Rubinina, N.M., Kholodnykh, A.I., and Metz, H., Ferroelectrics 95 (1989) p. 121.CrossRefGoogle Scholar
65.Xiqi, F., Lianan, T., and Jifeng, Y., Ferroelectrics 107 (1990) p. 21.CrossRefGoogle Scholar
66.Klose, F., Wöhlecke, M., and Kapphan, S., Ferroelectrics 92 (1989) p. 181.CrossRefGoogle Scholar
67.Sweeney, K.L., Halliburton, L.E., Bryan, D.A., Rice, R.R., Gerson, R., and Tomaschke, H.E., J. Appl. Phys. 57 (1985) p. 1036.CrossRefGoogle Scholar
68.Koppitz, J., Schirmer, O.F., Wöhlecke, M., Kuznetsov, A.I., and Grabmaier, B.C., Ferroelectrics 92 (1989) p. 233.CrossRefGoogle Scholar
69.de Rosendo, M.J., Arizmendi, L., Cabrera, J.M., and Agulló-López, F., Solid State Commun. 59 (1986) p. 499.CrossRefGoogle Scholar
70.Sweeney, K.L., Halliburton, L.E., Bryan, D.A., Rice, R.R., Gerson, R., and Tomaschke, H.E., Appl. Phys. Lett. 45 (1984) p. 805.CrossRefGoogle Scholar
71.Gerson, R., Kirchhoff, J.E, Halliburton, L.E., and Bryan, D.A., J. Appl. Phys. 60 (1986) p. 3553.CrossRefGoogle Scholar
72.Smyth, D.M., Ferroelectrics 50 (1983) p. 93.CrossRefGoogle Scholar
73.García-Cabañes, A., Sanz-García, J.A., Cabrera, J.M., Agulló-López, F., Zaldo, C., Pareja, R., Polgár, K., Raksányi, K., and Fölvàri, I., Phys. Rev. B 37 (1988) p. 6085.CrossRefGoogle Scholar
74.Fölvàri, I., Polgár, K., and Mecseki, A., Acta Phys. Hung. 55 (1984) p. 321.CrossRefGoogle Scholar
75.Volk, T.R., Pryalkin, V.I., and Rubinina, N.M., Opt. Lett. 15 (1990) p. 996.CrossRefGoogle Scholar
76.Yamamoto, J.K., Kitamura, K., Iyi, N., Kimura, S., Furukawa, Y., and Sato, M., Appl. Phys. Lett. 61 (1992) p. 2156.CrossRefGoogle Scholar