Skip to main content Accessibility help
×
Home

Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications

  • Sasan Dadbakhsh (a1), Mathew Speirs (a2), Jan Van Humbeeck (a3) and Jean-Pierre Kruth (a4)

Abstract

NiTi alloys are well known not only due to their exceptional shape-memory ability to recover their primary shape, but also because they show high ductility, excellent corrosion and wear resistance, and good biological compatibility. They have received significant attention especially in the field of laser additive manufacturing (AM). Among laser AM techniques, selective laser melting and laser metal deposition are utilized to exploit the unique properties of NiTi for fabricating complex shapes. This article reviews the properties of bulk and porous laser-made NiTi alloys as influenced by both process and material parameters. The effects of processing parameters on density, shape-memory response, microstructure, mechanical properties, surface corrosion, and biological properties are discussed. The article also describes potential opportunities where laser AM processes can be applied to fabricate dedicated NiTi components for medical applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications
      Available formats
      ×

Copyright

References

Hide All
1. Van Humbeeck, J., Mater. Sci. Eng. A 273, 134 (1999).
2. Duerig, T., Pelton, A., Stöckel, D., Mater. Sci. Eng. A 273, 149 (1999).
3. Levi, D.S., Kusnezov, N., Carman, G.P., Pediatr. Res. 63, 552 (2008).
4. Mohd Jani, J., Leary, M., Subic, A., Gibson, M.A., Mater. Des. 56, 1078 (2014).
5. Otsuka, K., Ren, X., Intermetallics 7, 511 (1999).
6. Liu, C., Qin, H., Mather, P.T., J. Mater. Chem. 17, 1543 (2007).
7. Otsuka, K., Kakeshita, T., MRS Bull. 27, 91 (2002).
8. Barbarino, S., Flores, E.I.S., Ajaj, R.M., Dayyani, I., Friswell, M.I., Smart Mater. Struct. 23, 063001 (2014).
9. Nemat-Nasser, S., Guo, W.-G., Mech. Mater. 38, 463 (2006).
10. Ye, B., Majumdar, B.S., Dutta, I., Acta Mater. 57, 2403 (2009).
11. Bhattacharya, K., Kohn, R.V., Acta Mater. 44, 529 (1996).
12. Daymond, M.R., Young, M.L., Almer, J.D., Dunand, D.C., Acta Mater. 55, 3929 (2007).
13. Dadbakhsh, S., Vrancken, B., Kruth, J.-P., Luyten, J., Van Humbeeck, J., Mater. Sci. Eng. A 650, 225 (2016).
14. Bishara, S.E., Barrett, R.D., Selim, M.I., Am. J. Orthod. Dentofacial Orthop. 103, 115 (1993).
15. Prymak, O., Bogdanski, D., Köller, M., Esenwein, S.A., Muhr, G., Beckmann, F., Donath, T., Assad, M., Epple, M., Biomaterials 26, 5801 (2005).
16. Bansiddhi, A., Sargeant, T.D., Stupp, S.I., Dunand, D.C., Acta Biomater. 4, 773 (2008).
17. Barrett, R.D., Bishara, S.E., Quinn, J.K., Am. J. Orthod. Dentofacial Orthop. 103, 8 (1993).
18. Andani, M.T., Shayesteh Moghaddam, N., Haberland, C., Dean, D., Miller, M.J., Elahinia, M., Acta Biomater. 10, 4058 (2014).
19. Pfeifer, R., Müller, C.W., Hurschler, C., Kaierle, S., Wesling, V., Haferkamp, H., Procedia CIRP 5, 253 (2013).
20. Lexcellent, C., “The World of Shape-Memory Alloys,” in Shape-Memory Alloys Handbook (Wiley, Hoboken, NJ, 2013), p. 11.
21. Hodgson, D.E., Wu, M.H., Biermann, R.J., “Shape Memory Alloys,” in ASM Handbook, Volume 2, Properties and Selection, Nonferrous Alloys and Special-Purpose Materials (ASM International, Materials Park, OH 1990), p. 897.
22. Elahinia, M.H., Hashemi, M., Tabesh, M., Bhaduri, S.B., Prog. Mater. Sci. 57, 911 (2012).
23. Yan, W., Mater. Sci. Eng. A 427, 348 (2006).
24. Yan, L., Liu, Y., J. Mater. Res. 30, 186 (2015).
25. Otsuka, K., Ren, X., Prog. Mater. Sci. 50, 511 (2005).
26. ASTM International, “ASTM F2063-00” (2000), available at http://www.astm.org/DATABASE.CART/HISTORICAL/F2063-00.htm.
27. Frenzel, J., George, E.P., Dlouhy, A., Somsen, C., Wagner, M.F.X., Eggeler, G., Acta Mater. 58, 3444 (2010).
28. Khalil-Allafi, J., Amin-Ahmadi, B., J. Alloys Compd. 487, 363 (2009).
29. Dadbakhsh, S., Speirs, M., Kruth, J.-P., Schrooten, J., Luyten, J., Van Humbeeck, J., Adv. Eng. Mater. 16, 1140 (2014).
30. Motemani, Y., Nili-Ahmadabadi, M., Tan, M.J., Bornapour, M., Rayagan, S., J. Alloys Compd. 469, 164 (2009).
31. Liu, Y., Xie, Z.L., Van Humbeeck, J., Delaey, L., Acta Mater. 47, 645 (1999).
32. Frenzel, J., Zhang, Z., Neuking, K., Eggeler, G., J. Alloys Compd. 385, 214 (2004).
33. McNamara, K., Butler, J., Gandhi, A.A., Tofail, S.A.M., in Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2016).
34. Weinert, K., Petzoldt, V., Mater. Sci. Eng. A 378, 180 (2004).
35. Yeom, J.-T., Kim, J.H., Hong, J.-K., Kim, S.W., Park, C.-H., Nam, T.H., Lee, K.-Y., Mater. Res. Bull. 58, 234 (2014).
36. Bormann, T., Schumacher, R., Müller, B., Mertmann, M., Wild, M., J. Mater. Eng. Perform. 21, 2519 (2012).
37. Clare, A.T., Chalker, P.R., Davies, S., Sutcliffe, C.J., Tsopanos, S., Int. J. Mech. Mater. Des. 4, 181 (2008).
38. Dadbakhsh, S., Speirs, M., Kruth, J.-P., Van Humbeeck, J., CIRP Ann. 64, 209 (2015).
39. Habijan, T., Haberland, C., Meier, H., Frenzel, J., Wittsiepe, J., Wuwer, C., Greulich, C., Schildhauer, T.A., Köller, M., Mater. Sci. Eng. C 33, 419 (2013).
40. Shishkovsky, I., Yadroitsev, I., Smurov, I., Phys. Procedia 39, 447 (2012).
41. Kyogoku, H., Ramos, J.A., Bourell, D.L., Proc. 14th Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2003), p. 668.
42. Krishna, B.V., Bose, S., Bandyopadhyay, A., Metall. Mater. Trans. A 38, 1096 (2007).
43. Bandyopadhyay, A., Krishna, B.V., Xue, W., Bose, S., J. Mater. Sci. 20, S29 (2009).
44. Mokgalaka, M.N., Pityana, S.L., Popoola, P.A.I., Mathebula, T., Adv. Mater. Sci. Eng. ID 363917 (2014).
45. Khademzadeh, S., Parvin, N., Bariani, P.F., Int. J. Precis. Eng. Manuf. 16, 2333 (2015).
46. Frazier, W.E., J. Mater. Eng. Perform. 23, 1917 (2014).
47. “Optomec Launches New 3D Printer for Metal Additive Manufacturing” (3Ders, 2013), http://www.3ders.org/articles/20130612-optomec-launches-new-3d-printer-for-metal-additive-manufacturing.html.
48. Kruth, J.-P., Dadbakhsh, S., Vrancken, B., Kempen, K., Vleugels, J., Humbeeck, J.V., “Additive Manufacturing of Metals via Selective Laser Melting,” in Additive Manufacturing, Srivatsan, T.S., Sudarshan, T.S., Eds. (CRC Press, Boca Raton, FL, 2015), p. 69.
49. Walker, J., Elahinia, M., Haberland, C., Proc. ASME 2013 Conf. Smart Mater., Adaptive Struct. Intell. Syst. (Snowbird, UT, 2013), p. 1.
50. Bormann, T., Müller, B., Schinhammer, M., Kessler, A., Thalmann, P., de Wild, M., Mater. Charact. 94, 189 (2014).
51. Saedi, S., Turabi, A.S., Andani, M.T., Haberland, C., Elahinia, M., Karaca, H., Smart Mater. Struct. 25, 035005 (2016).
52. Saedi, S., Turabi, A.S., Andani, M.T., Haberland, C., Karaca, H., Elahinia, M., J. Alloys Compd. 677, 204 (2016).
53. Shishkovsky, I.V., Yadroitsev, I.A., Smurov, I.Y., Tech. Phys. Lett. 39, 1081 (2013).
54. Zhang, B., Chen, J., Coddet, C., J. Mater. Sci. Technol. 29, 863 (2013).
55. Haberland, C., Elahinia, M., Walker, J.M., Meier, H., Frenzel, J., Smart Mater. Struct. 23, 104002 (2014).
56. Khademzadeh, S., Carmignato, S., Parvin, N., Zanini, F., Bariani, P.F., Mater. Des. 90, 745 (2016).
57. Halani, P.R., Shin, Y.C., Metall. Mater. Trans. A 43, 650 (2012).
58. Marattukalam, J.J., Singh, A.K., Datta, S., Das, M., Balla, V.K., Bontha, S., Kalpathy, S.K., Mater. Sci. Eng. C 57, 309 (2015).
59. Malukhin, K., Ehmann, K., J. Manuf. Sci. Eng. 128, 691 (2006).
60. Mahtabi, M.J., Shamsaei, N., Mitchell, M.R., J. Mech. Behav. Biomed. Mater. 50, 228 (2015).
61. Bernard, S., Krishna Balla, V., Bose, S., Bandyopadhyay, A., J. Mech. Behav. Biomed. Mater. 13, 62 (2012).
62. Bernard, S., Balla, V.K., Bose, S., Bandyopadhyay, A., Mater. Sci. Eng. C 31, 815 (2011).
63. Figueira, N., Silva, T.M., Carmezim, M.J., Fernandes, J.C.S., Electrochim. Acta 54, 921 (2009).
64. Muhonen, V., Heikkinen, R., Danilov, A., Jämsä, T., Tuukkanen, J., J. Mater. Sci. 18, 959 (2007).
65. Man, H.C., Cui, Z.D., Yue, T.M., Scr. Mater. 45, 1447 (2001).
66. Cui, Z.D., Man, H.C., Yang, X.J., Surf. Coat. Technol. 192, 347 (2005).
67. Chan, C.W., Hussain, I., Waugh, D.G., Lawrence, J., Man, H.C., Mater. Sci. Eng. C 42, 254 (2014).
68. Strauß, S., Dudziak, S., Hagemann, R., Barcikowski, S., Fliess, M., Israelowitz, M., Kracht, D., Kuhbier, J.W., Radtke, C., Reimers, K., Vogt, P.M., PLoS One 7, e51264 (2012).
69. Putters, J.L.M., Kaulesar Sukul, D.M.K.S., de Zeeuw, G.R., Bijma, A., Besselink, P.A., Eur. Surg. Res. 24, 378 (1992).
70. Munroe, N., Pulletikurthi, C., Haider, W., J. Mater. Eng. Perform. 18, 765 (2009).
71. Shabalovskaya, S., Anderegg, J., Van Humbeeck, J., Acta Biomater. 4, 447 (2008).
72. Sercombe, T.B., Xu, X., Challis, V.J., Green, R., Yue, S., Zhang, Z., Lee, P.D., Mater. Des. 67, 501 (2015).
73. Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Xie, Y.M., Biomaterials 83, 127 (2016).
74. Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., Van Oosterwyck, H., Acta Biomater. 8, 1648 (2012).
75. Van Bael, S., Chai, Y.C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., Kruth, J.-P., Schrooten, J., Acta Biomater. 8, 2824 (2012).
76. Dias, M.R., Fernandes, P.R., Guedes, J.M., Hollister, S.J., J. Biomech. 45, 938 (2012).
77. Zhang, Z., Jones, D., Yue, S., Lee, P.D., Jones, J.R., Sutcliffe, C.J., Jones, E., Mater. Sci. Eng. C 33, 4055 (2013).
78. Petrini, L., Migliavacca, F., J. Metall. 2011, ID 501483 (2011).
79. Shishkovskii, I.V., Yadroitsev, I.A., Smurov, I.Y., Powder Metall. Met. Ceram. 50, 275 (2011).
80. Lin, Y., Lei, Y., Fu, H., Lin, J., J. Mater. Eng. Perform. 24, 3717 (2015).
81. Lin, Y., Lei, Y., Fu, H., Lin, J., Mater. Des. 80, 82 (2015).
82. Abioye, T.E., Farayibi, P.K., Kinnel, P., Clare, A.T., Int. J. Adv. Manuf. Technol. 79, 843 (2015).
83. Tarnita, D., Tarnita, D., Bolcu, D., “Orthopaedic Modular Implants Based on Shape Memory Alloys,” in Biomedical Engineering—From Theory to Applications, Fazel, R., Ed. (InTech, 2011).
84. Dai, K., “Ti-Ni-Mo Shape-Memory Alloys for Medical Applications,” in Shape Memory Implants, Yahia, L., Ed. (Springer Berlin, Heidelberg, 2000), p. 105.
85. Gunther, V.E., Delay Law and New Class of Materials and Implants in Medicine (STT Publishing, Northampton, MA, 2000).
86. Saigal, A., Fonte, M., Mater. Sci. Eng. A 528, 5551 (2011).

Keywords

Related content

Powered by UNSILO

Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications

  • Sasan Dadbakhsh (a1), Mathew Speirs (a2), Jan Van Humbeeck (a3) and Jean-Pierre Kruth (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.