Skip to main content Accessibility help
×
Home

Ion Tracks in Metals and Intermetallic Compounds

  • A. Barbu, H. Dammak, A. Dunlop and D. Lesueur

Extract

When an energetic ion penetrates a target, it loses its energy via two nearly independent processes: (1) elastic collisions with the nuclei (nuclear-energy loss (dE/dx)n), which dominate the ion slowing down in the low energy range (i.e., in the stopping region); (2) electronic excitation and ionization (electronic-energy loss (dE/dx)e), which strongly overwhelm (dE/dx)n in the high energy range (typically above 1 MeV/nucleon). Until the 1980s, researchers considered that electronic-energy deposition could participate in damaging creation in many insulators, but the effects observed in bulk metals were solely ascribed to elastic nuclear collisions. This widely held opinion was due to the fact that in metallic systems the numerous very mobile conduction electrons allow a fast spreading of the deposited energy and an efficient screening of the space charge created in the projectile wake so that it seemed unreasonable to hope for damage creation or track formation in metallic targets following high levels of electronic-energy deposition.

A particular case is the observation more than 30 years ago of damage in thin or discontinuous. metallic films after fission fragment irradiation or MeV heavy ion bombardment. The spreading of the deposited energy is then strongly limited by the close vicinity of surfaces and interfaces.

Copyright

References

Hide All
1.Fleischer, R.L., Price, P.B., and Walker, R.M., J. Appl. Phys. 36 (1965) p. 3645; Nuclear Tracks in Solids (University of California Press, Berkeley, 1975).
2.Noggle, T.S. and Stiegler, J.O., J. Appl. Phys. 33 (1962) p. 1726.
3.Merkle, K.L., Phys. Rev. Lett. 9 (1962) p. 150.
4.Andersen, H.H., Knudsen, H., and Petersen, P. Moller, J. Appl. Phys. 49 (1978) p. 5638.
5.Mori, H. and Fujita, H., Jpn. J. Appl. Phys. 21 (1982) p. L494.
6.Koike, J., Okamoto, P.R., Rehn, L.E., and Meshii, M., Metall. Trans. 21A (1990) p. 1799.
7.Barbu, A., Martin, G., Toulemonde, M., and Jousset, J.C., C.R. Acad. Sci. Paris 299 (1984) p. 409.
8.Barbu, A., Dunlop, A., Lesueur, D., and Jaskierowicz, G., in Ordering and Disordering in Alloys, edited by Yaravi, A.R. (Elsevier, Amsterdam, 1992) p. 295.
9.Dunlop, A., Lesueur, D., Morillo, J., Dural, J., Spohr, R., and Vetter, J., Nucl. Instrum. Methods B48 (1990) p. 419.
10.Barbu, A., Dunlop, A., Lesueur, D., and Averback, R.S., Europhys. Lett. 15 (1991) p. 37.
11.Dunlop, A., Lesueur, D., and Barbu, A., J. Nucl. Mater. 205 (1993) p. 426.
12.Audouard, A., Balanzat, E., Bouffard, S., Jousset, J.C., Chamberod, A., Dunlop, A., Lesueur, D., Fuchs, G., Spohr, R., Vetter, J., and Thome, L., Phys. Rev. Lett. 65 (1990) p. 875.
13.Audouard, A., Dunlop, A., Lesueur, D., Lorenzelli, N., and Thome, L. (in press).
14.Barbu, A., Dunlop, A., Henry, J., Lesueur, D., and Lorenzelli, N., Mater. Sci. Forum 97–99 (1992) p. 577.
15.Barbu, A., Dunlop, A., Jaskierowicz, G., and Lorenzelli, N. (in press).
16.Dunlop, A., Lesueur, D., and Dural, J., Nucl. Instrum. Methods B42 (1989) p. 182.
17.Dunlop, A. and Lesueur, D., Radiat. Eff. Def. Sol. 126 (1993) p. 123.
18.Legrand, P., Dunlop, A., Lesueur, D., Lorenzelli, N., Morillo, J., and Bouffard, S., Mater. Sci. Forum 97–99 (1992) p. 587.
19.Dunlop, A., Lesueur, D., Legrand, P., Dammak, H., and Dural, J., Nucl. Instrum. Methods B90 (1994) p. 330.
20.Henry, J., Barbu, A., Leridon, B., Lesueur, D., and Dunlop, A., Nucl. Instrum. Methods B67 (1992) p. 390.
21.Dammak, H., Barbu, A., Dunlop, A., Lesueur, D., and Lorenzelli, N., Philos. Mag. Lett. 67 (1993) p. 253.
22.Dammak, H., PhD dissertation, Ecole Polytechnique, 1994, published as CEA Report R 5668, H. Dammak, A. Dunlop, and D. Lesueur (NIMB) in press.
23.Sikka, S.K., Vohra, Y.K., and Chidambaram, R., Prog. Mater. Sci. 27 (1982) p. 245.
24.Murray, J.L., Phase Diagrams of Binary Titanium Alloys (ASM International, 1987).
25.Klaumünzer, S., Schumacher, G., Rentzsch, S., Vogl, G., Söldner, L., and Bieger, H., Acta Metall. 30 (1982) p. 1493.
26.Klaumünzer, S., Li, Changlin, Löffler, S., Rammensee, M., Schumacher, G., and H.CNeitzert, h., Radiat. Eff. Def. Sol. 108 (1989) p. 131.
27.Audouard, A., Balanzat, E., Fuchs, G., Jousset, J.C., Lesueur, D., and Thome, L., Europhys. Lett. 3 (1987) p. 327; and Nucl. Instrum. Methods B39 (1989) p. 18.
28.Audouard, A., Balanzat, E., Jousset, J.C., Lesueur, D., and Thome, L., J. Phys. Condens. Matter 5 (1993) p. 995.
29.Hou, Ming-Dong, Klaumünzer, S., and Schumacher, G., Phys. Rev. B41 (1990) p. 1144.
30.Trautman, C., Spohr, R., and Toulemonde, M., Nucl. Instrum. Methods B83 (1993) p. 513.
31.Chadderton, L.T. and Montagu-Pollok, H., Proc. R. Soc. A274 (1969) p. 239.
32.Toulemonde, M., Dufour, C., and Paumier, E., Phys. Rev. B46 (1992) p. 14,362.
33.Bitensky, L.S. and Parilis, E.S., Nucl. Instrum. Methods B21 (1987) p. 26.
34.Lesueur, D. and Dunlop, A., Radiat. Eff. Def. Sol. 126 (1993) p. 163.
35.Legrand, P., Morillo, J., and Pontikis, V., Radiat. Eff. Def. Sol. 126 (1993) p. 151.
36.Legrand, P., thesis (1993).
37.Bullough, R. and Gilman, J.J., J. Appl. Phys. 37 (1966) p. 2283.
38.Dunlop, A., Legrand, P., Lesueur, D., Lorenzelli, N., Morillo, J., Barbu, A., and Bouffard, S., Europhys. Lett. 15 (1991) p. 765.
39.Dammak, H., Dunlop, A., Lesueur, D., Brunelle, A., Della-Negra, S., and Beyec, Y. Le, Phys. Rev. Lett. 74 (1995) p. 1135.

Ion Tracks in Metals and Intermetallic Compounds

  • A. Barbu, H. Dammak, A. Dunlop and D. Lesueur

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed