Skip to main content Accessibility help

Interfacing metals and compounds for enhanced hydrogen evolution from water splitting

  • Jian-Hong Tang (a1) and Yujie Sun (a2)


Hydrogen production from water electrolysis with renewable energy input has been the focus of tremendous attention, as hydrogen is widely advocated as a clean energy carrier. In order to realize large-scale hydrogen generation from water splitting, it is essential to develop competent and robust electrocatalysts that will substantially decrease the overpotential requirement and improve energy efficiency. Recent advances in electrocatalyst design reveal that interfacial engineering is an effective approach in tuning the adsorption–desorption abilities of key catalytic intermediates on active sites, accelerating electron transfer, and stabilizing the active sites for long-term operation. Consequently, a large number of hybrid electrocatalysts consisting of metal/compound interfaces have been demonstrated to exhibit superior performance for electrocatalytic hydrogen evolution from water. This article highlights examples of these hybrid electrocatalysts, including noble metal and non-noble metal candidates interfaced with a variety of compounds. Specific emphasis is placed on the synthetic methods, reaction mechanisms, and electrocatalytic activities, which are envisioned to inspire the design and development of further improved electrocatalysts for hydrogen evolution from water splitting on an industrial scale.



Hide All
1.Dresselhaus, M., Thomas, I., Nature 414, 332 (2001).
2.Chu, S., Majumdar, A., Nature 488, 294 (2012).
3.Linares, N., Silvestre-Albero, A.M., Serrano, E., Silvestre-Albero, J., Garcia-Martinez, J., Chem. Soc. Rev. 43, 7681 (2014).
4.Tang, C., Wang, H.F., Zhang, Q., Acc. Chem. Res. 51, 881 (2018).
5.Yang, Z., Zhang, J., Kintner-Meyer, M.C., Lu, X., Choi, D., Lemmon, J.P., Liu, J., Chem. Rev. 111, 3577 (2011).
6.Turner, J.A., Science 285, 687 (1999).
7.Han, L., Dong, S.J., Wang, E.K., Adv. Mater. 28, 9266 (2016).
8.Wang, J., Xu, F., Jin, H.Y., Chen, Y.Q., Wang, Y., Adv. Mater. 29, 1605838 (2017).
9.Zou, X.X., Zhang, Y., Chem. Soc. Rev. 44, 5148 (2015).
10.Jiao, Y., Zheng, Y., Jaroniec, M.T., Qiao, S.Z., Chem. Soc. Rev. 44, 2060 (2015).
11.Wang, J.H., Cui, W., Liu, Q., Xing, Z.C., Asiri, A.M., Sun, X.P., Adv. Mater. 28, 215 (2016).
12.Shi, Y.M., Zhang, B., Chem. Soc. Rev. 45, 1529 (2016).
13.Roger, I., Shipman, M.A., Symes, M.D., Nat. Rev. Chem. 1, 0003 (2017).
14.Anantharaj, S., Ede, S.R., Sakthikumar, K., Karthick, K., Mishra, S., Kundu, S., ACS Catal. 6, 8069 (2016).
15.Zheng, Y., Jiao, Y., Vasileff, A., Qiao, S.Z., Angew. Chem. Int. Ed. Engl. 57, 7568 (2018).
16.Subbaraman, R., Tripkovic, D., Strmcnik, D., Chang, K.-C., Uchimura, M., Paulikas, A.P., Stamenkovic, V., Markovic, N.M., Science 334, 1256 (2011).
17.Strmcnik, D., Lopes, P.P., Genorio, B., Stamenkovic, V.R., Markovic, N.M., Nano Energy 29, 29 (2016).
18.Shao, Q., Wang, P.T., Huang, X.Q., Adv. Funct. Mater. 29, 1806419 (2019).
19.Dubouis, N., Grimaud, A., Chem. Sci. 10, 9165 (2019).
20.Ruqia, B., Choi, S.I., ChemSusChem 11, 2643 (2018).
21.Zhang, J., Zhang, Q., Feng, X., Adv. Mater. 1808167 (2019).
22.Li, H., Chen, C., Yan, D., Wang, Y., Chen, R., Zou, Y., Wang, S., J. Mater. Chem. A 7, 23432 (2019).
23.Kwon, T., Jun, M., Joo, J., Lee, K., J. Mater. Chem. A 7, 5090 (2019).
24.Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A.P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., Markovic, N.M., Nat. Mater. 11, 550 (2012).
25.Yin, H., Zhao, S., Zhao, K., Muqsit, A., Tang, H., Chang, L., Zhao, H., Gao, Y., Tang, Z., Nat. Commun. 6, 6430 (2015).
26.Wang, L., Zhu, Y., Zeng, Z., Lin, C., Giroux, M., Jiang, L., Han, Y., Greeley, J., Wang, C., Jin, J., Nano Energy 31, 456 (2017).
27.Sarabia, F.J., Sebastián-Pascual, P., Koper, M.T., Climent, V., Feliu, J.M., ACS Appl. Mater. Interfaces 11, 613 (2018).
28.Wang, Y., Chen, L., Yu, X., Wang, Y., Zheng, G., Adv. Energy Mater. 7, 1601390 (2017).
29.Lao, M., Rui, K., Zhao, G., Cui, P., Zheng, X., Dou, S.X., Sun, W., Angew. Chem. Int. Ed. Engl. 58, 5432 (2019).
30.Basu, M., Nazir, R., Fageria, P., Pande, S., Sci. Rep. 6, 34738 (2016).
31.Yu, Q., Luo, Y., Qiu, S., Li, Q., Cai, Z., Zhang, Z., Liu, J., Sun, C., Liu, B., ACS Nano 13, 11874 (2019).
32.Zhang, L.-N., Lang, Z.-L., Wang, Y.-H., Tan, H.-Q., Zang, H.-Y., Kang, Z.-H., Li, Y.-G., Energy Environ. Sci. 12, 2569 (2019).
33.Cheng, Y., Lu, S., Liao, F., Liu, L., Li, Y., Shao, M., Adv. Funct. Mater. 27, 1700359 (2017).
34.Liu, S., Li, M., Wang, C., Jiang, P., Hu, L., Chen, Q., ACS Sustain. Chem. Eng. 6, 9137 (2018).
35.Gao, T., Yang, J., Nishijima, M., Miller, H.A., Vizza, F., Gu, H., Chen, H., Hu, Y., Jiang, Z., Wang, L., J. Electrochem. Soc. 165, F1147 (2018).
36.Danilovic, N., Subbaraman, R., Strmcnik, D., Chang, K.C., Paulikas, A., Stamenkovic, V., Markovic, N.M., Angew. Chem. Int. Ed. Engl. 51, 12495 (2012).
37.Chhetri, M., Sultan, S., Rao, C., Proc. Natl. Acad. Sci. U.S.A. 114, 8986 (2017).
38.Weng, Z., Liu, W., Yin, L.-C., Fang, R., Li, M., Altman, E.I., Fan, Q., Li, F., Cheng, H.-M., Wang, H., Nano Lett. 15, 7704 (2015).
39.Gong, M., Zhou, W., Tsai, M.-C., Zhou, J., Guan, M., Lin, M.-C., Zhang, B., Hu, Y., Wang, D.-Y., Yang, J., Nat. Commun. 5, 4695 (2014).
40.Liu, X., Ni, K., Niu, C., Guo, R., Xi, W., Wang, Z., Meng, J., Li, J., Zhu, Y., Wu, P., ACS Catal. 9, 2275 (2019).
41.Ji, D., Peng, L., Shen, J., Deng, M., Mao, Z., Tan, L., Wang, M., Xiang, R., Wang, J., Shah, S.S.A., Chem. Commun. 55, 3290 (2019).
42.You, B., Jiang, N., Sheng, M., Bhushan, M.W., Sun, Y., ACS Catal. 6, 714 (2016).
43.Xiong, K., Gao, Y., Chen, J., Shen, Y., Zhang, H., Chem. Commun. 56, 611 (2019).
44.Song, F., Li, W., Yang, J., Han, G., Liao, P., Sun, Y., Nat. Commun. 9, 4531 (2018).
45.Ma, Y.-Y., Lang, Z.-L., Yan, L.-K., Wang, Y.-H., Tan, H.-Q., Feng, K., Xia, Y.-J., Zhong, J., Liu, Y., Kang, Z.-H., Energy Environ. Sci. 11, 2114 (2018).
46.Song, F., Li, W., Yang, J., Han, G., Yan, T., Liu, X., Rao, Y., Liao, P., Cao, Z., Sun, Y., ACS Energy Lett. 4, 1594 (2019).
47.Yuan, C.-Z., Zhong, S.-L., Jiang, Y.-F., Yang, Z.K., Zhao, Z.-W., Zhao, S.-J., Jiang, N., Xu, A.-W., J. Mater. Chem. A 5, 10561 (2017).
48.Wang, H., Min, S., Wang, Q., Li, D., Casillas, G., Ma, C., Li, Y., Liu, Z., Li, L.-J., Yuan, J., ACS Nano 11, 4358 (2017).
49.Yan, X., Tian, L., He, M., Chen, X., Nano Lett. 15, 6015 (2015).
50.Zhu, C., Wang, A.L., Xiao, W., Chao, D., Zhang, X., Tiep, N.H., Chen, S., Kang, J., Wang, X., Ding, J., Adv. Mater. 30, 1705516 (2018).
51.Liu, Y., Li, Q., Si, R., Li, G.D., Li, W., Liu, D.P., Wang, D., Sun, L., Zhang, Y., Zou, X., Adv. Mater. 29, 1606200 (2017).
52.Feng, J.-X., Wu, J.-Q., Tong, Y.-X., Li, G.-R., J. Am. Chem. Soc. 140, 610 (2018).
53.Sun, Y., Huang, C., Shen, J., Zhong, Y., Ning, J., Hu, Y., J. Colloid Interface Sci. 558, 1 (2019).

Interfacing metals and compounds for enhanced hydrogen evolution from water splitting

  • Jian-Hong Tang (a1) and Yujie Sun (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.