Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-26T07:47:54.696Z Has data issue: false hasContentIssue false

In Situ X-Ray Diffraction and XAFS Studies of Expanded Fluid Selenium Using Synchrotron Radiation

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

A substantial and continuous volume expansion from liquid to rarefied vapor occurs by the change of temperature and pressure surrounding the liquid-vapor critical point without crossing the saturated vapor pressure curve. Many investigations have been carried out with molecular fluids including supercritical fluids, and several variations of the equation of state have been advanced since the famous work by van der Waals. In the expansion process the mean interatomic distance increases by up to 10 times that found under standard conditions. However reconstitution of the molecular units or other major structure changes are rare in these fluids. On the other hand, in the expansion process of metallic or semiconducting liquids, physical properties can drastically change. Liquid Hg, well-known as a prototype of liquid metals, undergoes a metal-insulator transition when the density is reduced to about 9 g/cm3 near the critical point.Elemental Se, which units in its liquid form is a semiconductor with a twofold-coordinated chain structure in which atoms are covalently bonded, also experiences a semiconductor-metal-insulator transition around the critical point (critical temperature and pressure data of Se: Tc = 1615°C, Pc = 385 bar, pc = 1.85 g/cm3).

The first indication of the semiconductormetal (SC-M) transition in fluid Se was found in electrical conductivity data by Hoshino and co-workers. Figure 1 shows the contours of constant dc conductivity plotted on the pressure-temperature (P-T) plane. The high-conductivity region appears in the immediate vicinity of the critical point. Another indication of the SC-M transition was obtained from the measurement of the optical reflectivity by Seyer et al. Drude-like energy dependence of the reflectivity spectra was observed at elevated pressures and temperatures.

Type
In Situ Synchrotron Radiation Research in Materials Science
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hensel, F. and Franck, E.U., Ber. Bunsenges. Phys. Chem. 70 (1966) p. 1154.CrossRefGoogle Scholar
2.Hosokawa, S.,Kuboi, T., and Tamura, K., Ber. Bunsenges. Phys. Chem. 101 (1997) p. 120.CrossRefGoogle Scholar
3.Hoshino, H., Schmutzler, R.W., and Hensel, F., Ber. Bunsenges. Phys. Chem. 80 (1976) p. 27.CrossRefGoogle Scholar
4.Hoshino, H., Schmutzler, R.W., Warren, W.W. Jr., and Hensel, F., Philos. Mag. 33 (1976) p. 255.CrossRefGoogle Scholar
5.Endo, H., Hoshino, H., Schmutzler, R.W., and Hensel, F., in Liquid Metals, edited by Evans, R. and Greenwood, D.A. (Institute of Physics, Bristol, 1977) p. 412.Google Scholar
6.Warren, W.W. Jr. and Dupree, R., Phys. Rev. B 22 (1980) p. 2257.CrossRefGoogle Scholar
7.Seyer, H-P., Tamura, K., Hoshino, H., Endo, H., and Hensel, F., Ber. Bunsenges. Phys. Chem. 90 (1986) p. 587.CrossRefGoogle Scholar
8.Ikemoto, H., Yamamoto, I., Yao, M., and Endo, H., J. Phys. Soc. Jpn. 63 (1994) p. 1611.CrossRefGoogle Scholar
9.Hosokawa, S. and Tamura, K., J. Non-Cryst. Solids 117/118 (1990) p. 489.CrossRefGoogle Scholar
10.Perron, J.C., Rabit, J., and Rialland, J.F., Philos. Mag. B46 (1982) p. 321.CrossRefGoogle Scholar
11.Freyland, W. and Cutler, M., J. Chem. Soc. Faraday Trans. 76 (1980) p. 756.CrossRefGoogle Scholar
12.Fischer, R., Schmutzler, R.W., and Hensel, F., J. Non-Cryst. Solids 35/36 (1980) p. 1295.CrossRefGoogle Scholar
13.Hosokawa, S. and Tamura, K., J. Non-Cryst. Solids 117/118 (1990) p. 52.CrossRefGoogle Scholar
14.Cabane, B. and Friedel, J., J. Phys. (Paris) 32 (1971) p. 73.CrossRefGoogle Scholar
15.Edeling, M. and Freyland, W., Ber. Bunsenges. Phys. Chem. 85 (1981) p. 1049.CrossRefGoogle Scholar
16.Hosokawa, S.,Matsuoka, T.,and Tamura, K., J. Phys. Cond. Matter 3 (1991) p. 4443.CrossRefGoogle Scholar
17.Tamura, K. and Hosokawa, S., J. Plys. IV (Paris) C5 (1) (1991) p. 39.Google Scholar
18.Tamura, K., J. Non-Cryst. Solids 117/118 (1990) p. 450.CrossRefGoogle Scholar
19.Tamura, K. and Hosokawa, S., Ber. Bunsenges. Phys. Chem. 96 (1992) p. 681.CrossRefGoogle Scholar
20.Tamura, K. and Hosokawa, S., J. Phys. Cond. Matter 6 (1994) p. A241.CrossRefGoogle Scholar
21.Tamura, K., J. Non-Cryst. Solids 205-207 (1996) p. 239.CrossRefGoogle Scholar
22.Inui, M., Noda, T., and Tamura, K., J. Non-Cryst. Solids 205-207 (1996) p. 261.CrossRefGoogle Scholar
23.Inui, M., Noda, T., Tamura, K., and Li, C., J. Phys. Cond. Matter 8 (1996) p. 9347.CrossRefGoogle Scholar
24.Soldo, Y., Hazemann, J.L., Aberdam, D., Inui, M., Tamura, K., Raoux, D., Pernot, E., Jal, J.F., and Dupuy-Philon, J., Phys. Rev. B 57 (1998) p. 258.CrossRefGoogle Scholar
25.Tamura, K., Inui, M., Nakaso, I., Oh'ishi, Y., Funakoshi, K., and Utsumi, W., J. Phys. Cond. Matter 10 (1998) p. 11405.CrossRefGoogle Scholar
26.Hosokawa, S., Tamura, K., Inui, M., Yao, M., Endo, H., and Hoshino, H., J. Chem. Phys. 97 (1992) p. 786.CrossRefGoogle Scholar
27.Tamura, K., Inui, M., and Hosokawa, S., Rev. Sci. Instrum. 66 (1995) p. 1382.CrossRefGoogle Scholar
28.Fukutome, H., Prog. Theor. Phys. 71 (1984) p.1.CrossRefGoogle Scholar
29.Harrison, W.A., Electronic Structure and Properties of Solids (Freeman, San Francisco, 1980) p. 93.Google Scholar
30.Ohtani, H., Yamaguchi, T., and Yonezawa, F., J. Phys. Soc. Jpn. 67 (1998) p. 2807.CrossRefGoogle Scholar
31.Shimojo, F., Hoshino, K., Watabe, M., and Zempo, Y., J. Phys. Cond. Matter 10 (1998) p. 1199.CrossRefGoogle Scholar
32.Kirchhoff, F., Kresse, G., and Gillan, M.J., Phys. Rev. B 57 (1998) p. 10482.CrossRefGoogle Scholar
33.Bichara, C., Raty, J-Y., and Gaspard, J-P., J. Non-Cryst. Solids in press.Google Scholar
34.Shimojo, F., Hoshino, K., and Zempo, Y., private communication.Google Scholar