Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T15:21:54.778Z Has data issue: false hasContentIssue false

Hydrogen Adsorption in Carbon Materials

Published online by Cambridge University Press:  29 November 2013

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent reports of very high, reversible adsorption of molecular hydrogen in pure nanotubes, alkali-doped graphite, and pure and alkali-doped graphite nanofibers (GNFs) have aroused tremendous interest in the research community, stimulating much experimental work and many theoretical calculations worldwide. The U.S. Department of Energy (DOE) Hydrogen Plan has seta standard for this discussion by providing a commercially significant benchmark for the amount of reversible hydrogen adsorption. This benchmark requires a system-weight efficiency (the ratio of stored H2 weight to system weight) of 6.5-wt% hydrogen and a volumetric density of 63 kg H2/m. If the encouraging experimental reports (summarized in Table I) are reproducible, it may be possible to reach the goals of the DOE Hydrogen Plan. On the other hand, the community still awaits confirmation of these experimental results by workers in other laboratories. Of additional concern is the fact that theoretical calculations have been unable to identify adsorption mechanisms compatible with the requirements of the DOE Hydrogen Plan.

An economical, safe, hydrogen-storage medium is a critically needed component of a hydrogen-fueled transportation system. Hydrogen storage in a carbon-based material offers further advantages associated with its low mass density. Furthermore, fuel cell technology involving the conversion of hydrogen into protons, or hydrogen and oxygen into electric current, is being vigorously researched for both transportation and small power-plant applications.

Type
Advanced Materials for Energy Storage
Copyright
Copyright © Materials Research Society 1999

References

1.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J., Nature (London) 386 (1997) p. 377.CrossRefGoogle Scholar
2.Dillon, A.C., Gennett, T., Alleman, J.L., Jones, K.M., and Heben, M.J. (private communication).Google Scholar
3.Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E., Appl. Phys. Lett. 74 (1999) p. 2307.CrossRefGoogle Scholar
4.Chambers, A., Park, C., Baker, R.T.K., and Rodriguez, N.M., J. Phys. Chem. B 102 (1998) p. 4253.CrossRefGoogle Scholar
5.Chen, P., Wu, X., Lin, J., and Tan, K.L., Science 285 (1999) p. 91.CrossRefGoogle Scholar
6.Hynek, S., Fuller, W., and Bentley, J., Int. J. Hydrogen Energy 22 (1997) p. 601.CrossRefGoogle Scholar
7.Stan, G. and Cole, M.W., J. Low Temp. Phys. 110 (1998) p. 539.CrossRefGoogle Scholar
8.Stan, G. and Cole, M.W., Surf. Sci. 395 (1998) p. 280.CrossRefGoogle Scholar
9.Wang, Q. and Johnson, J.K., J. Phys. Chem. B 103 (1999) p. 277.CrossRefGoogle Scholar
10.Wang, Q. and Johnson, J.K., J. Chem. Phys. 110 (1999) p. 577.CrossRefGoogle Scholar
11.Rzepka, M., Lamp, P., and de la Casa-Lillo, M.A., J. Phys. Chem. B 102 (1998) p. 10894.CrossRefGoogle Scholar
12.Ouellette, J., in Industrial Physicist 5 (1) (American Institute of Physics, Woodbury, NY) p. 15.Google Scholar
13.Pederson, M.R. and Broughton, J.Q., Phys. Rev. Lett. 69 (1992) p. 2689.CrossRefGoogle Scholar
14.Heben, M.J. (private communication).Google Scholar
15.Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., and Dresselhaus, M.S. (unpublished).Google Scholar
16.Williams, K.A. and Eklund, P.C. (unpublished).Google Scholar
17.Niitzenadel, C., Züttel, A., Chartouni, D., and Schlapbach, L., Electrochem. Solid-State Lett. 2 (1999) p. 30.CrossRefGoogle Scholar
18.Kranendonk, J.K., Solid Hydrogen (Plenum Press, New York, 1983) p. 131.CrossRefGoogle Scholar
19. In Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series III/14a, edited by Hellwege, K.-H. and Hellwege, A.M. (Springer-Verlag, Berlin, 1988) p. 18.Google Scholar
20.Dresselhaus, M.S. and Dresselhaus, G., Adv. Phys. 30 (1981) p. 139.CrossRefGoogle Scholar
21.Nielsen, N., McTague, J.P., and Passell, L., in Phase Transitions in Surface Films, edited by Dash, J.G. and Ruvalds, J. (Plenum Press, New York, 1979).Google Scholar
22.Nielsen, M., McTague, J.P., and Ellenson, W., J. Phys. 38 (1977) p. C4/10.Google Scholar
23.Brown, S.D.M., Dresselhaus, G., and Dresselhaus, M.S., in Recent Advances in Catalytic Materials, edited by Rodriguez, N.M., Soled, S.L., and Hrbek, J. (Mater. Res. Soc. Symp. Proc. 497, Warrendale, PA, 1998) p. 157.Google Scholar
24.Colin, M. and Hérold, A., Bull. Soc. Chim. Fr. (1972) p. 1982.Google Scholar
25.Furdin, G., Lagrange, P., Hérold, A., and Zeller, C., C.R. Acad. Sci. (Paris) 282 (1976) p. C563.Google Scholar
26.Enoki, T., Sano, M., and Inokuchi, H., J. Chem. Phys. 78 (1983) p. 2017.CrossRefGoogle Scholar
27.Inokuchi, H., Wakayama, N., Kondow, T., and Mori, Y., J. Chem. Phys. 46 (1967) p. 837.CrossRefGoogle Scholar
28.Watanabe, M., Tachikawa, M.,and Osaka, T., Electrochim. Acta 42 (1997) p. 2707.CrossRefGoogle Scholar
29.Wang, Q., Challa, S.R., Sholl, D.S., and Johnson, J.K., Phys. Rev. Lett. 82 (1999) p. 956.CrossRefGoogle Scholar
30.Beenakker, J.J.M., Borman, V.D., and Yu. Krylov, S., Chem. Phys. Lett. 232 (1995) p. 379.CrossRefGoogle Scholar
31.Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996) p. 899.Google Scholar
32.Iijima, S. and Ichihashi, T., Nature (London) 363 (1993) p. 603.CrossRefGoogle Scholar
33.Darkrim, F. and Levesque, D., J. Chem. Phys. 109 (1998) p. 4981.CrossRefGoogle Scholar