Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T00:44:38.977Z Has data issue: false hasContentIssue false

Hole-conductor-free perovskite solar cells

Published online by Cambridge University Press:  16 June 2020

Deyi Zhang
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China; zhangwangyan@hust.edu.cn
Yaoguang Rong
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China; ygrong@hust.edu.cn
Yue Hu
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China; yuehu@hust.edu.cn
Anyi Mei
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China; anyimei@hust.edu.cn
Hongwei Han
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China; hongwei.han@mail.hust.edu.cn
Get access

Abstract

Metal-halide perovskite solar cells (PSCs) have become a promising candidate for photovoltaic applications. Current popular organic hole conductors for highly efficient PSCs bring cost and stability issues, which hinder the commercialization of the PSCs. Hole-conductor-free PSCs are attracting great interest because they eliminate the adverse effects of organic hole conductors by transporting holes in the perovskite itself. In this article, we summarize recent progress in conventional, inverted, and printable mesoscopic hole-conductor-free PSCs. Specifically, we emphasize the stunning stability and scale-up manufacturing of printable hole-conductor-free PSCs, discussing their potential from laboratory to market. The causes for hole-conductor-free PSCs’ current low efficiency are also discussed, and are primarily ascribed to energy-level alignment and interface recombination. We believe that the efficiencies of hole-conductor-free PSCs can be enhanced to be comparable with hole-conductor-containing PSCs by interface modification and material design.

Type
Halide Perovskite Opto- and Nanoelectronic Materials and Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

National Renewable Energy Laboratory Efficiency Chart (2019).Google Scholar
Luo, Q., Zhang, Y., Liu, C., Li, J., Wang, N., Lin, H., J. Mater. Chem. A 3, 15996 (2015).CrossRefGoogle Scholar
Nguyen, W.H., Bailie, C.D., Unger, E.L., McGehee, M.D., J. Am. Chem. Soc. 136, 10996 (2014).CrossRefGoogle Scholar
Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J., Nano Lett. 14, 5561 (2014).CrossRefGoogle Scholar
Ku, Z., Rong, Y., Xu, M., Liu, T., Han, H., Sci. Rep. 3, 3132 (2013).CrossRefGoogle Scholar
Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., Han, H., Science 345, 295 (2014).CrossRefGoogle Scholar
Zhang, L., Liu, T., Liu, L., Hu, M., Yang, Y., Mei, A., Han, H., J. Mater. Chem. A 3, 9165 (2015).CrossRefGoogle Scholar
Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., Grätzel, M., J. Am. Chem. Soc. 134, 17396 (2012).CrossRefGoogle Scholar
Aharon, S., Cohen, B.E., Etgar, L., J. Phys. Chem. C 118, 17160 (2014).CrossRefGoogle Scholar
Aharon, S., Gamliel, S., Cohen, B.E., Etgar, L., Phys. Chem. Chem. Phys. 16, 10512 (2014).CrossRefGoogle Scholar
Ruan, W., Zhang, Z., Hu, Y., Bai, F., Qiu, T., Zhang, S., Appl. Surf. Sci. 465, 420 (2019).CrossRefGoogle Scholar
Liang, J., Wang, C., Wang, Y., Xu, Z., Lu, Z., Ma, Y., Zhu, H., Hu, Y., Xiao, C., Yi, X., Zhu, G., Lv, H., Ma, L., Chen, T., Tie, Z., Jin, Z., Liu, J., J. Am. Chem. Soc. 138, 15829 (2016).CrossRefGoogle Scholar
Liu, J., Zhou, Q., Thein, N.K., Tian, L., Jia, D., Johansson, E.M.J., Zhang, X., J. Mater. Chem. A 7, 13777 (2019).CrossRefGoogle Scholar
Gamliel, S., Dymshits, A., Aharon, S., Terkieltaub, E., Etgar, L., J. Phys. Chem. C 119, 19722 (2015).CrossRefGoogle Scholar
Qiang, Y., Cheng, J., Qi, Y., Shi, H., Liu, H., Geng, C., Xie, Y., J. Alloys Compd. 809, 151817 (2019).CrossRefGoogle Scholar
Zhou, H., Shi, Y., Wang, K., Dong, Q., Bai, X., Xing, Y., Du, Y., Ma, T., J. Phys. Chem. C 119, 4600 (2015).CrossRefGoogle Scholar
Li, F., Wang, C., Liu, P., Xiao, Y., Bai, L., Qi, F., Hou, X., Zhang, H., Wang, Y., Wang, S., Zhao, X.-Z., Solar RRL 3, 1800297 (2019).CrossRefGoogle Scholar
Lin, S., Yang, B., Qiu, X., Yan, J., Shi, J., Yuan, Y., Tan, W., Liu, X., Huang, H., Gao, Y., Zhou, C., Org. Electron. 53, 235 (2018).CrossRefGoogle Scholar
Qiu, L., He, S., Yang, J., Jin, F., Deng, J., Sun, H., Cheng, X., Guan, G., Sun, X., Zhao, H., Peng, H., J. Mater. Chem. A 4, 10105 (2016).CrossRefGoogle Scholar
Hu, H., Wang, D., Zhou, Y., Zhang, J., Lv, S., Pang, S., Chen, X., Liu, Z., Padture, N.P., Cui, G., RSC Adv. 4, 28964 (2014).CrossRefGoogle Scholar
Kong, W., Li, W., Liu, C., Liu, H., Miao, J., Wang, W., Chen, S., Hu, M., Li, D., Amini, A., Yang, S., Wang, J., Xu, B., Cheng, C., ACS Nano 13, 1625 (2019).CrossRefGoogle Scholar
Ye, S., Rao, H., Zhao, Z., Zhang, L., Bao, H., Sun, W., Li, Y., Gu, F., Wang, J., Liu, Z., Bian, Z., Huang, C., J. Am. Chem. Soc. 139, 7504 (2017).CrossRefGoogle Scholar
Wu, W.-Q., Wang, Q., Fang, Y., Shao, Y., Tang, S., Deng, Y., Lu, H., Liu, Y., Li, T., Yang, Z., Gruverman, A., Huang, J., Nat. Commun. 9, 1625 (2018).CrossRefGoogle Scholar
Zhang, Y., Hu, X., Chen, L., Huang, Z., Fu, Q., Liu, Y., Zhang, L., Chen, Y., Org. Electron. 30, 281 (2016).CrossRefGoogle Scholar
Hu, Y., Zhang, Z., Mei, A., Jiang, Y., Hou, X., Wang, Q., Du, K., Rong, Y., Zhou, Y., Xu, G., Han, H., Adv. Mater. 30, 1705786 (2018).CrossRefGoogle Scholar
Xiong, Y., Zhu, X., Mei, A., Qin, F., Liu, S., Zhang, S., Jiang, Y., Zhou, Y., Han, H., Solar RRL 2, 1800002 (2018).CrossRefGoogle Scholar
Tian, C., Mei, A., Zhang, S., Tian, H., Liu, S., Qin, F., Xiong, Y., Rong, Y., Hu, Y., Zhou, Y., Xie, S., Han, H., Nano Energy 53, 160 (2018).CrossRefGoogle Scholar
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I., Nature 517, 476 (2015).CrossRefGoogle Scholar
Hu, M., Liu, L., Mei, A., Yang, Y., Liu, T., Han, H., J. Mater. Chem. A 2, 17115 (2014).CrossRefGoogle Scholar
Hou, X., Xu, M., Tong, C., Ji, W., Fu, Z., Wan, Z., Hao, F., Ming, Y., Liu, S., Hu, Y., Han, H., Rong, Y., Yao, Y., J. Power Sources 415, 105 (2019).CrossRefGoogle Scholar
Wang, Q., Zhang, W., Zhang, Z., Liu, S., Wu, J., Guan, Y., Mei, A., Rong, Y., Hu, Y., Han, H., Adv. Energy Mater. 10, 1903092 (2019).CrossRefGoogle Scholar
Li, W., Li, J., Li, J., Fan, J., Mai, Y., Wang, L., J. Mater. Chem. A 4, 17104 (2016).CrossRefGoogle Scholar
Hu, Y., Si, S., Mei, A., Rong, Y., Liu, H., Li, X., Han, H., Solar RRL 1, 1600019 (2017).CrossRefGoogle Scholar
Grancini, G., Roldán-Carmona, C., Zimmermann, I., Mosconi, E., Lee, X., Martineau, D., Narbey, S., Oswald, F., De Angelis, F., Graetzel, M., Nazeeruddin, M.K., Nat. Commun. 8, 15684 (2017).CrossRefGoogle Scholar
Li, X., Tschumi, M., Han, H., Babkair, S.S., Alzubaydi, R.A., Ansari, A.A., Habib, S.S., Nazeeruddin, M.K., Zakeeruddin, S.M., Grätzel, M., Energy Technol. 3, 551 (2015).CrossRefGoogle Scholar
Priyadarshi, A., Haur, L.J., Murray, P., Fu, D., Kulkarni, S., Xing, G., Sum, T.C., Mathews, N., Mhaisalkar, S.G., Energy Environ. Sci. 9, 3687 (2016).CrossRefGoogle Scholar
De Rossi, F., Baker, J.A., Beynon, D., Hooper, K.E.A., Meroni, S.M.P., Williams, D., Wei, Z., Yasin, A., Charbonneau, C., Jewell, E.H., Watson, T.M., Adv. Mater. Technol. 3, 1800156 (2018).CrossRefGoogle Scholar
Rong, Y., Hu, Y., Mei, A., Tan, H., Saidaminov, M.I., Seok, S.I., McGehee, M.D., Sargent, E.H., Han, H., Science 361, eaat8235 (2018).CrossRefGoogle Scholar
You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N., Yang, Y., Nat. Nanotechnol. 11, 75 (2016).□CrossRefGoogle Scholar