Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T16:48:22.142Z Has data issue: false hasContentIssue false

Growth and Characterization of GaAs Single Crystals

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

From a commercial viewpoint, gallium arsenide (GaAs) is currently the leading member of the III-V compound family. Oriented substrates, cut and polished from single-crystal boules, form the materials foundation for a rapidly maturing technology of high speed and high frequency electronic devices and circuits. The initial thrust of GaAs applications was in high powered lasers and light-emitting diodes (LEDs) fabricated on n-type (Si-doped) GaAs wafers grown by the horizontal Bridgman technique. One of the important benefits of using GaAs is the high electron mobility compared to Si. This property has driven the development of low noise and power field-effect transistors (FETs) for microwave applications. The semi-insulating substrate requirement (>107 Ω-cm) was initially met by chromium doping. Currently, the interest is focused on MMIC (microwave monolithic integrated circuits), MIMIC (millimeter microwave ICs), analog ICs for lightwave transmitters and receivers, and digital ICs. The digital circuits have been realized with ion-implanted FETs, selectively doped heterostructure transistors (SDHTs), and heterostructure bipolar transistors (HBTs). Presently, most of the semi-insulating (SI) material processed by the industry is nominally undoped, and grown by the liquid encapsulated Czochralski (LEC) technique. The SI behavior is attained via a delicate balance of deep EL2 donors and carbon acceptors, avoiding chromium in order to eliminate the anomalous out-diffusion and type-conversion associated with this dopant.

GaAs wafers up to 4 inches in diameter, with electrical properties homogenized by whole ingot annealing, are currently available from U.S. domestic and overseas suppliers. However, the overall quality is compromised by the large dislocation densities, varying 104 – 105/cm2.

Type
Crystal Growth
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Newman, D.H., in GaAs Materials Devices and Circuits, edited by Howes, M.J. and Morgan, D.V. (Wiley, New York, 1985) p. 229.Google Scholar
2.Goronkin, H., Grondin, R.O., and Ferry, D.K., in GaAs Technology, edited by Ferry, D.K. (Sams, Indianapolis, 1985) p. 155.Google Scholar
3.Ferry, D.K., in GaAs Technology, edited by Ferry, D.K. (Sams, Indianapolis, 1985) p. 331.Google Scholar
4.Turner, B., in GaAs Materials Devices and Circuits, edited by Howes, M.J. and Morgan, D.V. (Wiley, New York, 1985) p. 361.Google Scholar
5.Tu, C.W., Hendel, R.H., and Dingle, R., in GaAs Technology, edited by Ferry, D.K. (Sams, Indianapolis, 1985) p. 107.Google Scholar
6.Yuan, M.T., McLevige, W.V., and Shih, H.D., in VLSI Electronics, Vol. 11, edited by Einspruch, N.G. and Wisseman, W.R. (Academic Press, New York, 1985) p. 173.Google Scholar
7.Mullin, J.B., Straughan, B.W., and Brickell, W.S., J. Phys. Chem. Solids 26 (1965) p. 782.CrossRefGoogle Scholar
8.Holmes, D.E., Chen, R.T., Elliott, K.R., and Kirkpatrick, C.J., Appl. Phys. Lett. 40 (1982) p. 46.CrossRefGoogle Scholar
9.Jordan, A.S. and Nikolakopoulou, G.A., J. Appl. Phys. 55 (1984) p. 4194.CrossRefGoogle Scholar
10.Hirayama, M., Togashi, M., Kato, N., Suzuki, M., Matsuoka, Y., and Kawasaki, Y., IEEE Trans. Electron Devices ED-33 (1986) p. 104.CrossRefGoogle Scholar
11.Nanishi, Y., Ishida, S., Honda, T., Yamazaki, H., and Miyazawa, S., Japan. J. Appl. Phys. 21 (1982) p. L335.CrossRefGoogle Scholar
12.Winston, H.V., Hunter, A.T., Olsen, H.M., Bryan, R.P., and Lee, R.E., Appl. Phys. Lett. 45 (1984) p. 447; S. Miyazawa and F. Hyuga, IEEE Trans. Electron Devices ED-33 (1986) p. 227.CrossRefGoogle Scholar
13.Roedel, R.J., VonNeida, A.R., Caruso, R., and Dawson, L.R., J. Electrochem. Soc. 126 (1979) p. 637.CrossRefGoogle Scholar
14.Petroff, P. and Hartman, R.L., Appl. Phys. Lett. 23 (1973) p. 469.CrossRefGoogle Scholar
15.Cochran, C.N. and Foster, L.M., J. Electrochem. Soc. 109 (1962) p. 144.CrossRefGoogle Scholar
16.Hobgood, H.M., Ta, L.B., Rohatgi, A., Eldridge, G.W., and Thomas, R.N., in Semi-Insulating III-V Materials, edited by Makram-Ebeid, Sherif and Tuck, B. (Shiva, Nantwich, 1982) p. 28.Google Scholar
17.Jordan, A.S., Caruso, R., and Von-Neida, A.R., Bell Syst. Tech. J. 62 (1983) p. 477.CrossRefGoogle Scholar
18.Fukuda, T., Japan. J. Appl. Phys. 22 (1982) p. 413.CrossRefGoogle Scholar
19.Jordan, A.S., VonNeida, A.R., and Caruso, R., J. Cryst. Growth 76 (1986) p. 243.CrossRefGoogle Scholar
20.Jordan, A.S., Caruso, R., VonNeida, A.R., and Nielsen, J.W., J. Appl. Phys. 52 (1981) p. 3331.CrossRefGoogle Scholar
21.Parsey, J.M. Jr., Nanishi, Y., Lagowski, J., and Gatos, H.C., J. Electrochem. Soc. 129 (1982) p. 388.CrossRefGoogle Scholar
22.Parsey, J.M. Jr., Lagowski, J., and Gatos, M.C., in Proc. Symp. of III-V Opto-electronics Epitaxy and Device Related Processes, edited by Keramidas, V.G. and Mahajan, S. (The Electrochemical Society, Pennington, NJ, 1983) p. 61.Google Scholar
23.Duncan, W.M., Westphal, G.H., and Sherer, J.B., IEEE Electron Device Lett. EDL-4 (1983) p. 198.Google Scholar
24.Terashima, K. and Fukuda, T., J. Cryst. Growth 63 (1983) p. 423.CrossRefGoogle Scholar
25.Matthiesen, D.M., Wargo, M.J., Motakef, S., Carlson, D.J., Nakos, J.S., and Witt, A.F., J. Cryst. Growth 85 (1987) p. 557.CrossRefGoogle Scholar
26.Chandrasekhar, S., Hydrodynamics and Hydromagnetic Stability (Oxford Clarendon Press, Oxford, 1961).Google Scholar
27.Kohda, H., Yamada, K., Nakanishi, H., Kobayashi, T., Osaka, J., and Moshikawa, K., J. Cryst. Growth 71 (1985) p. 813.CrossRefGoogle Scholar
28.Terashima, K., Katsumata, T., Orito, F., Kikuta, T., and Fukuda, T., Japan, J. Appl. Phys. 22 (1983) p. L325.CrossRefGoogle Scholar
29.S. Akai, Suzuki, Kohe, K., Nishida, Y., Fujita, K., and Kito, N., Sumitomo Tech. Rev. 18 (1978) p. 105.Google Scholar
30.Young, M.S.S., Parsey, J.M. Jr., Jordan, A.S., VonNeida, A.R., Caruso, R., and Kinsella, A.P. (to be published).Google Scholar
31.Parsey, J.M. Jr. and Thiel, F.A., J. Cryst. Growth 85 (1987) p. 327.CrossRefGoogle Scholar
32.Jordan, A.S. and Parsey, J.M. Jr., J. Cryst. Growth 79 (1986) p. 280.CrossRefGoogle Scholar
33.Akai, S., Fujita, K., Nishine, S., Kito, N., Sato, Y., Yoshitake, S., and Sekinobu, H., in Proc. Symp. of III-VOpto-electronics Epitaxy and Device Related Processes, edited by Keramidas, V.G. and Mahajan, S. (The Electrochemical Society, Pennington, NJ, 1983) p. 41.Google Scholar
34.Young, M.S.S. (unpublished).Google Scholar
35.Parsey, J.M. Jr. and Thiel, F.A., J. Cryst. Growth 73 (1985) p. 211.CrossRefGoogle Scholar
36.Bourret, E.D., Guitron, J.B., and Haller, E.E., J. Cryst. Growth 85 (1987) p. 124.CrossRefGoogle Scholar
37.Gault, W.A., Monberg, E.M., and Clemans, J.E., J. Cryst. Growth 74 (1986) p. 491.CrossRefGoogle Scholar
38.Clemans, J.E. and Conway, J.H., in Semiinsulating III-V Materials (Malmö, 1988, unpublished).Google Scholar
39.Abernathy, C.R., Kinsella, A.P., Jordan, A.S., Caruso, R., Pearton, S.J., Temkin, H., and Wade, H., J. Cryst. Growth 85 (1987) p. 106.CrossRefGoogle Scholar
40.Jordan, A.S., Caruso, R., and Von-Neida, A.R., Bell Syst. Tech. J. 59 (1980) p. 593.CrossRefGoogle Scholar
41.Jordan, A.S., VonNeida, A.R., and Caruso, R., J. Cryst. Growth 70 (1984) p. 555.CrossRefGoogle Scholar
42.Jordan, A.S., J. Cryst. Growth 49 (1980) p. 631.CrossRefGoogle Scholar
43.Elliott, A.G., Wei, C-L., Farraro, R., Woolhouse, G., Scott, M., and Hiskes, R., J. Cryst. Growth 70 (1984) p. 169.CrossRefGoogle Scholar
44.VonNeida, A.R., Caruso, R., Jordan, A.S., and Oster, L.J. (unpublished).Google Scholar
45.Shinoyama, S., Uemura, C., Yamamoto, A., and Tohno, S., Japan. J. Appl. Phys. 19 (1980) p. 331.CrossRefGoogle Scholar
46.Muller, G., Voelkl, J., and Tomzig, E., J. Cryst. Growth 64 (1983) p. 40.CrossRefGoogle Scholar
47.Sazhin, N.P., Milvidskii, M.G., Osvenskii, V.B., and Stoljarov, O.G., Sov. Phys.-Solid State 8 (1966) p. 1223.Google Scholar
48.Seki, Y., Watanabe, H., and Matsui, J., J. Appl. Phys. 49 (1978) p. 822.CrossRefGoogle Scholar
49.Swaminathan, V. and Copley, S.M., J. Appl. Phys. 47 (1976) p. 4405.CrossRefGoogle Scholar
50.Tabache, M.G., Bourett, E.B., and Elliot, A.G., Appl. Phys. Lett. 49 (1986) p. 289.CrossRefGoogle Scholar
51.Guruswamy, S., Rai, R.S., Faber, K.T., and Hirth, J.P., J. Appl. Phys. 62 (1987) p. 4130.CrossRefGoogle Scholar
52.Hobgood, H.M., Thomas, R.N., Barrett, D.L., Eldridge, G.W., Sopira, M.M., and Driver, M.C., in Semi-insulating III-V Materials, edited by Look, D.C. and Blakemore, J.S. (Shiva, Nantwich, 1984) p. 149.Google Scholar
53.Kimura, H., Afable, C.B., Olsen, H.M., Hunter, A.T., and Winston, M.V., J. Cryst. Growth 70 (1984) p. 185.CrossRefGoogle Scholar
54.Inoue, T., Nishine, S., Shibata, M., Matsumoto, T., Yoshitake, S., Sato, Y., Shimoda, T., and Fujita, K., in Proc. 12th Intern. Symp. on GaAs and Related Compounds, Karaizawa, Japan, 1985, edited by Fujimoto, M. (Inst. Phys. Conf. Ser. 79, Inst. Phys., London-Bristol, 1986) p. 7.Google Scholar
55.Walukiewicz, W., Bourret, E.D., Yau, W.F., McMurray, R.E. Jr., Haller, E.E., and Bliss, D.F., in Defect Recognition and Image Processing in III-V Compounds, II, edited by Weber, E.R. (Elsevier Scientific Publishers, B.V. Amsterdam, 1987) p. 297.Google Scholar
56.Lagowski, J., Gatos, H.C., Parsey, J.M. Jr., Wada, K., Kaminska, M., and Walukiewicz, W., Appl. Phys. Lett. 40 (1982) p. 342.CrossRefGoogle Scholar
57.Henry, C.H. and Lang, D.V., Phys. Rev. B15 (1977) p. 989.CrossRefGoogle Scholar
58.Martin, G.M., Jacob, G., Poiblaud, G., Goltzene, A., and Schwab, C., in Defects and Radiation Effects in Semiconductors, edited by Hasiguti, R.R. (Inst. Phys. Conf. Ser. 59, Inst. Phys., London-Bristol, 1980) p. 281.Google Scholar
59.Dobrilla, P. and Blakemore, J.S., J. Appl. Phys. 58 (1985) p. 208.CrossRefGoogle Scholar
60.Cummings, K.D., Pearton, S.J., and Vella-Coleiro, G., J. Appl. Phys. 60 (1986) p. 1680.Google Scholar
61.Martin, S. and Duseaux, M., in Defect Recognition and Image Processing in III-V Compounds, edited by Fillard, J.P. (Elsevier Scientific Publishers, B.V. Amsterdam, 1985) p. 287.Google Scholar