Skip to main content Accessibility help
×
Home

Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects

  • Xiaobing Ren, Yu Wang, Kazuhiro Otsuka, Pol Lloveras, Teresa Castán, Marcel Porta, Antoni Planes and Avadh Saxena...

Abstract

For decades, a kind of nanoscale microstructure, known as the premartensitic “tweed structure” or “mottled structure,” has been widely observed in various martensitic or ferroelastic materials prior to their martensitic transformation, but its origin has remained obscure. Recently, a similar nanoscale microstructure also has been reported in highly doped ferroelastic systems, but it does not change into martensite; instead, it undergoes a nanoscale freezing transition—“strain glass” transition—and is frozen into a nanodomained strain glass state. This article provides a concise review of the recent experimental and modeling/simulation effort that is leading to a unified understanding of both premartensitic tweed and strain glass. The discussion shows that the premartensitic tweed or strain glass is characterized by nano-sized quasistatic ferroelastic domains caused by the existence of random point defects or dopants in ferroelastic systems. The mechanisms behind the point-defect-induced nanostructures and glass phenomena will be reviewed, and their significance in ferroic functional materials will be discussed.

Copyright

References

Hide All
1.Tanner, L.E., Schryvers, D., Shapiro, S.M., Mater. Sci. Eng. A 127, 205 (1990).
2.Murakami, Y., Shibuya, H., Shindo, D., J. Microsc. 203, 22 (2001).
3.Castán, T., Vives, E., Mañosa, L., Planes, A., Saxena, A., in Magnetism and Structure in Functional Materials, Planes, A., Mañosa, L., Saxena, A., Eds., (Springer Verlag, Berlin, 2005), pp. 2748.
4.Dai, X.H., Xu, Z., Viehland, D., Philos. Mag. A 70, 33 (1994).
5.Dai, X.H., Xu, Z., Li, J.F., Viehland, D., Philos. Mag. A 74, 395 (1996).
6.Saxena, A., Castán, T., Planes, A., Porta, M., Kishi, Y., Lograsso, T.A., Viehland, D., Wuttig, M., Graef, M. De, Phys. Rev. Lett. 92, 197203 (2004).
7.Schmahl, W.W., Putnis, A., Salje, E., Freeman, P., Graeme-Barber, A., Jones, R., Singh, K.K., Blunt, J., Edwards, P.P., Loram, J., Mirza, K., Philos. Mag. Lett. 60, 241 (1989).
8.Xu, Y.W., Suenaga, M., Tafto, J., Sabatini, R.L., Moodenbaugh, A.R., Zolliker, P., Phys. Rev. B 39, 6667 (1989).
9.Millange, F., Caignaert, V., Domengés, B., Raveau, B., Suard, E., Chem. Mater. 10, 1974 (1998).
10.Mathur, N., Littlewood, P., Nat. Mater. 3, 207 (2004).
11.Ahn, K.H., Lookman, T., Bishop, A.R., Nature 428, 401 (2004).
12.Dagotto, E., Science 309, 257 (2005).
13.Bishop, A.R., Lookman, T., Saxena, A., Shenoy, S.R., Europhys. Lett. 63, 289 (2003).
14.Sarkar, S., Ren, X., Otsuka, K., Phys. Rev. Lett. 95, 205702 (2005).
15.Wang, Y., Ren, X., Otsuka, K., Phys. Rev. Lett. 97, 225703 (2006).
16.Wang, Y., Ren, X., Otsuka, K., Saxena, A., Phys. Rev. B 76, 132201 (2007).
17.Wang, Y., Ren, X., Otsuka, K., Saxena, A., Acta Mater. 56, 2885 (2008).
18.Ren, X.B., Wang, Y., Zhou, Y., Zhang, Z., Wang, D., Fan, G., Otsuka, K., Suzuki, T., Ji, Y., Zhang, J., Tian, Y., Hou, S., Ding, X., Philos. Mag. (2009), in press.
19.Lloveras, P., Castán, T., Porta, M., Planes, A., Saxena, A., Phys. Rev. Lett. 100, 165707 (2008).
20.Lloveras, P., Castán, T., Porta, M., Planes, A., Saxena, A., Phys. Rev. B 80, 054107 (2009).
21.Kartha, S., Castán, T., Krumhansl, J.A., Sethna, J.P., Phys. Rev. Lett. 67, 3630 (1991).
22.Kartha, S., Krumhansl, J.A., Sethna, J.P., Wickham, L.K., Phys. Rev. B 52, 803 (1995).
23.Semenovskaya, S., Khachaturyan, A.G., Acta Mater. 45, 4367 (1997).
24.Semenovskaya, S., Khachaturyan, A.G., J. Appl. Phys. 83, 5125 (1998).
25.Salje, E.K.H., Phase Transitions in Ferroelastic and Co-Elastic Crystals (Cambridge University Press, Cambridge, 1990).
26.Otsuka, K., Wayman, C.M., Eds., Shape Memory Materials (Cambridge University Press, Cambridge, 1998).
27.Planes, A., Mañosa, L., Solid State Phys. 55, 159 (2001).
28.Saxena, A., Lookman, T., in Handbook of Materials Modeling, Yip, S., Ed. (Springer-Verlag, 2005), pp. 21432154.
29.Shenoy, S.R., Lookman, T., Saxena, A., Bishop, A.R., Phys. Rev. B 60, R12537 (1999); K.O. Rasmussen, T. Lookman, A. Saxena, A.R. Bishop, R.C. Albers, S.R. Shenoy, Phys. Rev. Lett. 87, 055704 (2001).
30.Shapiro, S.M., Yang, B.X., Noda, Y., Tanner, L.E., Schryvers, D., Phys. Rev. B 44, 9301 (1991).
31.Cai, W., Murakami, Y., Otsuka, K., Mater. Sci. Eng. A 275, 186 (1999).
32.Kakeshita, T., Fukuda, T., Tetsukawa, H., Saburi, T., Kindo, K., Takeuchi, T., Honda, M., Endo, S., Taniguchi, T., Miyako, Y., Jpn. J. Appl. Phys. 37, 2535 (1998).
33.Otsuka, K., Ren, X., Progr. Mater. Sci. 50, 511 (2005).
34.Choi, M.S., Fukuda, T., Kakeshita, T., Mori, H., Philos. Mag. 86, 67 (2006).
35.Petry, W., J. Phys. IV 5, C215 (1995).
36.Zhang, J.S., PhD thesis, University of Tsukuba, 2000.
37.Wang, Y., PhD thesis, Xi'an Jiaotong University, 2008.
38.Wadhawan, V.K., Introduction to Ferroic Materials (Gordon and Breach, Armsterdam, 2000).
39.Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M., Phys. Rev. B 46, 8003 (1992).
40.Mydosh, J.A., Spin Glasses (Taylor & Francis, London, 1993).
41.Burns, G., Dacol, F.H., Phys. Rev. B 28, 2527 (1983).
42.Murakami, Y., Shindo, D., Oikawa, K., Kainuma, R., Ishida, K., Acta Mater. 50, 2173 (2002).

Related content

Powered by UNSILO

Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects

  • Xiaobing Ren, Yu Wang, Kazuhiro Otsuka, Pol Lloveras, Teresa Castán, Marcel Porta, Antoni Planes and Avadh Saxena...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.