Skip to main content Accessibility help
×
Home

Efficient and stable electrocatalysts for water splitting

  • Xiuming Bu (a1), Yanguang Li (a2) and Johnny C. Ho (a3)

Abstract

Water-splitting electrolysis, using a renewable power source, has been widely considered as a promising energy conservation and storage technology that is environmentally friendly. In order to lower the required energy barrier and to improve the energy-conversion efficiency of hydrogen evolution and oxygen evolution on the electrodes, highly efficient and durable electrocatalysts are essential. To date, various preparation methods and theoretical models have been developed to accelerate the catalyst design and to further understand the associated electrocatalytic mechanism. In this issue of MRS Bulletin, all aspects of non-noble metal-based electrocatalysts for water splitting involving standard methodology, surface electronic structure engineering, morphology design, interface effects, pH operation range, activity descriptors, and operational stability are discussed. These discussions indicate the importance of materials innovations for the realization of highly efficient and durable electrocatalysts for large-scale cost-effective water splitting.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Efficient and stable electrocatalysts for water splitting
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Efficient and stable electrocatalysts for water splitting
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Efficient and stable electrocatalysts for water splitting
      Available formats
      ×

Copyright

References

Hide All
1.Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K., Jaramillo, T.F., Science 355, 4998 (2017).
2.Liardet, L., Hu, X., ACS Catal. 8, 644 (2018).
3.Dong, G., Fang, M., Wang, H., Yip, S., Cheung, H.Y., Wang, F., Wong, C.Y., Chu, S.T., Ho, J.C., J. Mater. Chem. A 3, 13080 (2015).
4.Sun, S., Li, H., Xu, Z. J., Joule 2, 1024 (2018).
5.Voiry, D., Chhowalla, M., Gogotsi, Y., Kotov, N.A., Li, Y., Penner, R.M., Schaak, R.E., Weiss, P.S., ACS Nano 12, 9635 (2018).
6.Shinagawa, T., Garcia-Esparza, A.T., Takanabe, K., Sci. Rep. 5, 13801 (2015).
7.Zou, X., Zhang, Y., Chem. Soc. Rev. 44, 5148 (2015).
8.Bayatsarmadi, B., Zheng, Y., Vasileff, A., Qiao, S.Z., Small 13, 1700191 (2017).
9.Li, Q., Bao, Y., Bai, F., MRS Bull. 45 (7), 569 (2020).
10.Shi, Y., Zhou, Y., Yang, D.R., Xu, W.X., Wang, C., Wang, F.B., Xu, J.J., Xia, X.H., Chen, H.Y., J. Am. Chem. Soc. 139, 15479 (2017).
11.He, Y., He, Q., Wang, L., Zhu, C., Golani, P., Handoko, A.D., Yu, X., Gao, C., Ding, M., Wang, X., Liu, F., Zeng, Q., Yu, P., Guo, S., Yakobson, B.I., Wang, L., Seh, Z.W., Zhang, Z., Wu, M., Wang, Q.J., Zhang, H., Liu, Z., Nat. Mater. 18, 1098 (2019).
12.Yan, D., Li, Y., Huo, J., Chen, R., Dai, L., Wang, S., Adv. Mater. 29, 1606459 (2017).
13.Cai, Z., Bi, Y., Hu, E., Liu, W., Dwarica, N., Tian, Y., Li, X., Kuang, Y., Li, Y., Yang, X.Q., Wang, H., Sun, X., Adv. Energy Mater. 8, 1701694 (2018).
14.He, Q., Wan, Y., Jiang, H., Pan, Z., Wu, C., Wang, M., Wu, X., Ye, B., Ajayan, P.M., Song, L., ACS Energy Lett. 3, 1373 (2018).
15.Zhang, R., Zhang, Y.-C., Pan, L., Shen, G.-Q., Mahmood, N., Ma, Y.-H., Shi, Y., Jia, W., Wang, L., Zhang, X., Xu, W., Zou, J.-J., ACS Catal. 8, 3803 (2018).
16.Indra, A., Tallarida, M., Schmeißer, D., Menezes, P.W., Strasser, P., Driess, M., Das, C., Bergmann, A., Sahraie, N.R., J. Am. Chem. Soc. 136, 17530 (2014).
17.Yang, L., Guo, Z., Huang, J., Xi, Y., Gao, R., Su, G., Wang, W., Cao, L., Dong, B., Adv. Mater. 29, 1704574 (2017).
18.Yu, Y., Nam, G.H., He, Q., Wu, X.J., Zhang, K., Yang, Z., Chen, J., Ma, Q., Zhao, M., Liu, Z., Ran, F.R., Wang, X., Li, H., Huang, X., Li, B., Xiong, Q., Zhang, Q., Liu, Z., Gu, L., Du, Y., Huang, W., Zhang, H., Nat. Chem. 10, 638 (2018).
19.Cheng, F., Su, Y., Liang, J., Tao, Z., Chen, J., Chem. Mater. 22, 898 (2010).
20.Xie, C., Chen, W., Du, S., Yan, D., Zhang, Y., Chen, J., Liu, B., Wang, S., Nano Energy 71, 104653 (2020).
21.Wei, R., Fang, M., Dong, G., Lan, C., Shu, L., Zhang, H., Bu, X., Ho, J.C., ACS Appl. Mater. Interfaces 10, 7079 (2018).
22.Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F., Nilsson, A., Nat. Chem. 2, 454 (2010).
23.Li, H., Tsai, C., Koh, A.L., Cai, L., Contryman, A.W., Fragapane, A.H., Zhao, J., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., Nørskov, J.K., Zheng, X., Nat. Mater. 15, 48 (2016).
24.Fang, M., Dong, G., Wei, R., Ho, J.C., Adv. Energy Mater. 7, 1700559, 1 (2017).
25.Xu, X., Tian, X., Zhong, Z., Kang, L., Yao, J., J. Power Sources 424, 42 (2019).
26.Zeng, L., Zhou, K., Yang, L., Du, G., Liu, L., Zhou, W., ACS Appl. Energy Mater. 1, 6279 (2018).
27.Ling, T., Yan, D.Y., Wang, H., Jiao, Y., Hu, Z., Zheng, Y., Zheng, L., Mao, J., Liu, H., Du, X.W., Jaroniec, M., Qiao, S.Z., Nat. Commun. 8, 1509 (2017).
28.Frydendal, R., Busch, M., Halck, N.B., Paoli, E.A., Krtil, P., Chorkendorff, I., Rossmeisl, J., ChemCatChem 7, 149 (2015).
29.Yang, Q., Xu, Q., Jiang, H.-L., Chem. Soc. Rev. 46, 4774 (2017).
30.Tang, J.-H., Sun, Y., MRS Bull. 45 (7), 548 (2020).
31.Safizadeh, F., Ghali, E., Houlachi, G., Int. J. Hydrogen Energy 40, 256 (2015).
32.Huynh, M., Bediako, D.K., Nocera, D.G., J. Am. Chem. Soc. 136, 6002 (2014).
33.Bennett, J.E., Int. J. Hydrogen Energy 5, 401 (1980).
34.Katsounaros, I., Meier, J. C., Klemm, S.O., Topalov, A.A., Biedermann, P.U., Auinger, M., Mayrhofer, K.J.J., Electrochem. Commun. 13, 634 (2011).
35.Niu, L., Sun, L., An, L., Qu, D., Wang, X., Sun, Z., MRS Bull. 45 (7), 562 (2020).
36.Tong, W., Forster, M., Dionigi, F., Dresp, S., Sadeghi Erami, R., Strasser, P., Cowan, A.J., Farràs, P., Nat. Energy, doi:10.1038/s41560-020-0550-8.
37.Janani, G., Choi, H., Surendran, S., Sim, U., MRS Bull. 45 (7), 539 (2020).
38.Hammer, B., Nørskov, J.K., Adv. Catal. 45, 71 (2000).
39.Danilovic, N., Subbaraman, R., Strmcnik, D., Stamenkovic, V.R., Markovic, N.M., Serbian, J., Chem. Soc. 78, 2007 (2013).
40.Hwang, J., Rao, R.R., Giordano, L., Katayama, Y., Yu, Y., Shao-Horn, Y., Science 358, 751 (2017).
41.Ha, D.H., Han, B., Risch, M., Giordano, L., Yao, K.P.C., Karayaylali, P., Shao-Horn, Y., Nano Energy 29, 37 (2016).
42.Gou, W., Zhang, M., Wu, J., Dong, Q., Qu, Y., MRS Bull. 45 (7), 555 (2020).
43.Macounova, K., Makarova, M., Krtil, P., Electrochem. Commun. 11, 1865 (2009).
44.Rong, X., Parolin, J., Kolpak, A.M., ACS Catal. 6, 1153 (2016).
45.Zhao, Z.J., Liu, S., Zha, S., Cheng, D., Studt, F., Henkelman, G., Gong, J., Nat. Rev. Mater. 4, 792 (2019).
46.Ye, S., Luo, F., Zhang, Q., Zhang, P., Xu, T., Wang, Q., He, D., Guo, L., Zhang, Y., He, C., Ouyang, X., Gu, M., Liu, J., Sun, X., Energy Environ. Sci. 12, 1000 (2019).
47.Hillman, A.R., J. Solid State Electrochem. 15, 1647 (2011).
48.Frydendal, R., Paoli, E.A., Knudsen, B.P., Wickman, B., Malacrida, P., Stephens, I.E.L., Chorkendorff, I., ChemElectroChem 1, 2075 (2014).
49.Feng, Z., Hong, W.T., Fong, D.D., Lee, Y.L., Yacoby, Y., Morgan, D., Shao-Horn, Y., Acc. Chem. Res. 49, 966 (2016).
50.Calle-Vallejo, F., Díaz-Morales, O.A., Kolb, M.J., Koper, M.T.M., ACS Catal. 5, 869 (2015).
51.Fang, M., Gao, W., Dong, G., Xia, Z., Yip, S., Qin, Y., Qu, Y., Ho, J.C., Nano Energy 27, 247 (2016).
52.Xu, H., Wan, J., Zhang, H., Fang, L., Liu, L., Huang, Z., Li, J., Gu, X., Wang, Y., Adv. Energy Mater. 8, 1 (2018).
53.Yuan, W., Wang, S., Ma, Y., Qiu, Y., An, Y., Cheng, L., ACS Energy Lett. 5, 692 (2020).
54.Lu, X., Zhao, C., Nat. Commun. 6, 1 (2015).
55.Zhu, K., Wu, T., Zhu, Y., Li, X., Li, M., Lu, R., Wang, J., Zhu, X., Yang, W., ACS Energy Lett. 2, 1654 (2017).
56.Han, H.S., Hong, Y.R., Woo, J., Mhin, S., Kim, K.M., Kwon, J., Choi, H., Chung, Y.C., Song, T., Adv. Energy Mater. 9, 1 (2019).
57.Yu, L., Zhou, H., Sun, J., Qin, F., Yu, F., Bao, J., Yu, Y., Chen, S., Ren, Z., Energy Environ. Sci. 10, 1820 (2017).
58.Senthil Raja, D., Lin, H.W., Lu, S.Y., Nano Energy 57, 1 (2019).
59.Cai, Z., Bu, X., Wang, P., Su, W., Wei, R., Ho, J.C., Yang, J., Wang, X., J. Mater. Chem. A 7, 21722 (2019).
60.Coy, E., MRS Bull. 45 (7), 574 (2020).

Efficient and stable electrocatalysts for water splitting

  • Xiuming Bu (a1), Yanguang Li (a2) and Johnny C. Ho (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.