Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T21:25:44.072Z Has data issue: false hasContentIssue false

Does shape affect shape change at the nanoscale?

Published online by Cambridge University Press:  10 January 2019

Michael J. Demkowicz*
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, USA; demkowicz@tamu.edu
Get access

Abstract

The mechanical deformation behavior of nanocomposite metals depends on the dimensions of their constituents, due to the interactions of dislocations with grain and phase boundaries. It is now becoming apparent that the mechanical behavior of these materials also depends on the constituent shapes. This article summarizes experimental and modeling investigations on two types of metal nanocomposites composed of intricately interpenetrating phases—those formed by phase separation in physical vapor codeposited alloys and those synthesized by liquid-metal dealloying. The opportunities and challenges these materials present for investigating complex microstructural morphologies and their effects on mechanical behavior are discussed.

Type
Mechanical Behavior of Nanocomposites
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hirth, J.P., Lothe, J., Theory of Dislocations, 2nd ed. (Wiley, New York, 1982).Google Scholar
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D., Acta Mater . 58, 1152 (2010).CrossRefGoogle Scholar
Williamson, G.K., Smallman, R.E., Philos. Mag. 1, 34 (1956).CrossRefGoogle Scholar
Maass, R., Van Petegem, S., Ma, D.C., Zimmermann, J., Grolimund, D., Roters, F., Van Swygenhoven, H., Raabe, D., Acta Mater . 57, 5996 (2009).CrossRefGoogle Scholar
Greer, J.R., De Hosson, J.T.M., Prog. Mater. Sci. 56, 654 (2011).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., Benson, D.J., Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Sutton, A.P., Balluffi, R.W., Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1995).Google Scholar
Beyerlein, I.J., Demkowicz, M.J., Misra, A., Uberuaga, B.P., Prog. Mater. Sci. 74, 125 (2015).CrossRefGoogle Scholar
Lebensohn, R.A., Brenner, R., Castelnau, O., Rollett, A.D., Acta Mater . 56, 3914 (2008).CrossRefGoogle Scholar
Ma, E., JOM 58, 49 (2006).CrossRefGoogle Scholar
Wei, Y.J., Anand, L., Acta Mater . 55, 921 (2007).CrossRefGoogle Scholar
Fu, H.H., Benson, D.J., Meyers, M.A., Acta Mater . 52, 4413 (2004).CrossRefGoogle Scholar
Carpenter, J.S., Vogel, S.C., LeDonne, J.E., Hammon, D.L., Beyerlein, I.J., Mara, N.A., Acta. Mater. 60, 1576 (2012).CrossRefGoogle Scholar
Zheng, S.J., Beyerlein, I.J., Carpenter, J.S., Kang, K.W., Wang, J., Han, W.Z., Mara, N.A., Nat. Commun. 4, 1696 (2013).CrossRefGoogle Scholar
Nizolek, T.J., Begley, M.R., McCabe, R.J., Avallone, J.T., Mara, N.A., Beyerlein, I.J., Pollock, T.M., Acta Mater . 133, 303 (2017).CrossRefGoogle Scholar
Nizolek, T., Beyerlein, I.J., Mara, N.A., Avallone, J.T., Pollock, T.M., Appl. Phys. Lett. 108, 4 (2016).CrossRefGoogle Scholar
Hansen, B.L., Carpenter, J.S., Sintay, S.D., Bronkhorst, C.A., McCabe, R.J., Mayeur, J.R., Mourad, H.M., Beyerlein, I.J., Mara, N.A., Chen, S.R., Gray, G.T., Int. J. Plast. 49, 71 (2013).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., Hoagland, R.G., Acta Mater . 53, 4817 (2005).CrossRefGoogle Scholar
Akasheh, F., Zbib, H.M., Hirth, J.P., Hoagland, R.G., Misra, A., J. Appl. Phys. 101, 10 (2007).CrossRefGoogle Scholar
Chee, S.W., Stumphy, B., Vo, N.Q., Averback, R.S., Bellon, P., Acta Mater . 58, 4088 (2010).CrossRefGoogle Scholar
Thilly, L., Veron, M., Ludwig, O., Lecouturier, F., Peyrade, J.P., Askenazy, S., Philos. Mag. A 82, 925 (2002).CrossRefGoogle Scholar
De Yoreo, J., Basic Research Needs for Synthesis Science (US Department of Energy, Office of Science, Washington, DC, 2016).Google Scholar
Beierschmitt, K., Basic Research Needs for Future Nuclear Energy (US Department of Energy, Office of Science, Washington, DC, 2017).Google Scholar
Banerjee, R., Puthucode, A., Bose, S., Ayyub, P., Appl. Phys. Lett. 90, 3 (2007).CrossRefGoogle Scholar
Vullers, F.T.N., Spolenak, R., Acta Mater . 99, 213 (2015).CrossRefGoogle Scholar
Derby, B., Cui, Y., Baldwin, J.K., Misra, A., Thin Solid Films 647, 50 (2018).CrossRefGoogle Scholar
Baumer, R.E., Demkowicz, M.J., Phys. Rev. Lett. 110, 5 (2013).CrossRefGoogle Scholar
Puthucode, A., Devaraj, A., Nag, S., Bose, S., Ayyub, P., Kaufman, M.J., Banerjee, R., Philos. Mag. 94, 1622 (2014).CrossRefGoogle Scholar
Lu, Y., Wang, C.P., Gao, Y.P., Shi, R.P., Liu, X.J., Wang, Y.Z., Phys. Rev. Lett. 109, 5 (2012).Google Scholar
Cui, Y.C., Derby, B., Li, N., Mara, N.A., Misra, A., Mater. Res. Lett. 6, 184 (2018).CrossRefGoogle Scholar
McCue, I., Karma, A., Erlebacher, J., MRS Bull . 43, 27 (2018).CrossRefGoogle Scholar
McCue, I., Benn, E., Gaskey, B., Erlebacher, J., “Dealloying and Dealloyed Materials,” in Annual Review of Materials Research, Clarke, D.R., Ed. (Annual Reviews, Palo Alto, CA, 2016), vol. 46, pp. 263.Google Scholar
Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K., Nature 410, 450 (2001).CrossRefGoogle Scholar
McCue, I., Stuckner, J., Murayama, M., Demkowicz, M.J., Sci. Rep. 8, 11 (2018).CrossRefGoogle Scholar
Wada, T., Yubuta, K., Inoue, A., Kato, H., Mater. Lett. 65, 1076 (2011).CrossRefGoogle Scholar
Wada, T., Kato, H., Scr. Mater. 68, 723 (2013).CrossRefGoogle Scholar
Wada, T., Yubuta, K., Kato, H., Scr. Mater. 118, 33 (2016).CrossRefGoogle Scholar
McCue, I., Demkowicz, M.J., JOM 69, 2199 (2017).CrossRefGoogle Scholar
Yu, S.G., Yubuta, K., Wada, T., Kato, H., Carbon 96, 403 (2016).CrossRefGoogle Scholar
Wada, T., Geslin, P.A., Kato, H., Scr. Mater. 142, 101 (2018).CrossRefGoogle Scholar
Okulov, I.V., Okulov, A.V., Volegov, A.S., Markmann, J., Scr. Mater. 154, 68 (2018).CrossRefGoogle Scholar
Zhao, C.H., Wada, T., De Andrade, V., Williams, G.J., Gelb, J., Li, L., Thieme, J., Kato, H., Chen-Wiegart, Y.C.K., ACS Appl. Mater. Interfaces 9, 34172 (2017).CrossRefGoogle Scholar
Okulov, I.V., Weissmuller, J., Markmann, J., Sci. Rep. 7, 7 (2017).CrossRefGoogle Scholar
Geslin, P.A., McCue, I., Gaskey, B., Erlebacher, J., Karma, A., Nat. Commun. 6, 8 (2015).CrossRefGoogle Scholar
McCue, I., Gaskey, B., Geslin, P.A., Karma, A., Erlebacher, J., Acta Mater. 115, 10 (2016).CrossRefGoogle Scholar
Mokhtari, M., Le Bourlot, C., Adrien, J., Dancette, S., Wada, T., Duchet-Rumeau, J., Kato, H., Maire, E., J. Alloys. Compd. 707, 251 (2017).CrossRefGoogle Scholar
McCue, I., Gaskey, B., Crawford, B., Erlebacher, J., Appl. Phys. Lett. 109, 5 (2016).CrossRefGoogle Scholar
McCue, I., Ryan, S., Hemker, K., Xu, X.D., Li, N., Chen, M.W., Erlebacher, J., Adv. Eng. Mater. 18, 46 (2016).CrossRefGoogle Scholar
Chen, Y.C.K., Chu, Y.S., Yi, J., McNulty, I., Shen, Q., Voorhees, P.W., Dunand, D.C., Appl. Phys. Lett. 96, 043122 (2010).CrossRefGoogle Scholar
Mendoza, R., Thornton, K., Savin, I., Voorhees, P.W., Acta Mater. 54, 743 (2006).CrossRefGoogle Scholar
Beets, N., Farkas, D., JOM 70, 2185 (2018).CrossRefGoogle Scholar
Beyerlein, I.J., Mayeur, J.R., Zheng, S., Mara, N.A., Wang, J., Misra, A., Proc. Natl. Acad. Sci. U.S.A. 111, 4386 (2014).CrossRefGoogle Scholar