Skip to main content Accessibility help
×
Home

Detached Bridgman Growth—A Standard Crystal Growth Method with a New Twist

  • Arne Cröll and Martin P. Volz

Abstract

Bridgman or vertical gradient freeze (VGF) crystal growth processes have several advantages compared to other melt growth methods, especially the possibility to achieve a low level of thermal stress and low dislocation densities in the grown crystals. However, crystals grown in contact with a crucible usually suffer from mechanical stress during cooling, reducing the structural quality. The “detached” or “dewetted” Bridgman growth avoids this problem and has recently been investigated in more detail as a promising tool to improve crystal quality. Detached growth, where the crystal is separated from the crucible wall by a gap of 10–100 μm, was found originally in some microgravity experiments going back to 1975. Considerable improvements of crystal quality were reported for those cases; however, the reasons for the detachment were not fully understood. In the last 10–15 years, theoretical investigations as well as new experiments have shown beyond a doubt that detached growth can, in principle, be achieved in Earth's gravity with the same advantages that were demonstrated in the crystals grown under microgravity. It could be shown that the ability to achieve detachment depends on a complex interplay of the wetting of the melt with the crucible and the crystal as well as the pressure balance in the system, including the hydrostatic pressure, the gas pressure above the melt, and the pressure below the melt. It turns out that for stable detachment, only, specific combinations of meniscus shape, gap size, wetting angle, growth angle, and pressures work. The conditions that lead to detachment are thus highly specific for a given system.

Copyright

References

Hide All
1Witt, A.F., Gatos, H.C., Lichtensteiger, M., Lavine, M.C., Herman, C.J., J. Electrochem. Soc. 122, 276 (1975).
2Witt, A.F., Gatos, H.C., Lichtensteiger, M., Herman, C.J., J. Electrochem. Soc. 125, 1832 (1978).
3Wilcox, W.R., Regel, L., Microgravity Sci. Technol. VIII/1, 56 (1995).
4Zemskov, V.S., Fiz. Khim. Obrab. Mater. 17, 56 (1983).
5Duffar, T., Paret-Harter, I., Dusserre, P., J. Cryst. Growth 100, 171 (1990).
6Duffar, T., Boiton, P., Dussere, P., Abadie, J., J. Cryst. Growth 179, 397 (1997).
7Duffar, T., Dusserre, P., Picca, F., Lacroix, S., Giacometti, N., J. Cryst. Growth 211, 434 (2000).
8Wang, Y., Regel, L.L., Wilcox, W.R., J. Cryst. Growth 209, 175 (2000).
9Bizet, L., Duffar, T., Cryst. Res. Technol. 39, 491 (2004).
10Palosz, W., Volz, M.P., Cobb, S., Motakef, S., Szofran, F.R., J. Cryst. Growth 277, 124 (2005).
11Balint, S., Braescu, L., Sylla, L., Epure, S., Duffar, T., J. Cryst. Growth 310, 1564 (2008).
12Kaiser, N., Cröll, A., Szofran, F.R., Cobb, S.D., Benz, K.W., J. Cryst. Growth 231, 448 (2001).
13Li, J.G., Hausner, H.H., J. Eur. Ceram. Soc. 9, 101 (1992).
14Cröll, A., Salk, N., Szofran, F.R., Cobb, S.D., Volz, M.P., J. Cryst. Growth 242, 45 (2002).
15Sylla, L., Paulin, J.P., Vian, G., Garnier, C., Duffar, T., Mater. Sci. Eng. A 495, 208 (2008).
16Zhang, H., Larson, D.J. Jr., Wang, C.L., Chen, T.H., J. Cryst. Growth 250, 215 (2003).
17Duffar, T., Dusserre, P., Giacometti, N., J. Cryst. Growth 223, 69 (2001).
18Szofran, F.R., Benz, K.W., Cobb, S.D., Cröll, A., Dold, P., Kaiser, N., Motakef, S., Schweizer, M., Volz, M.P., Vujisic, L., Walker, J.S., Reduction of Defects in Germanium-Silicon, in Proc. Microgravity Mat. Sci. Conf. 2000, Ramachandran, N., Bennett, N., McCauley, D., Murphy, K., Poindexter, S., Eds. (2001), pp. 573579.
19Schweizer, M., Cobb, S.D., Volz, M.P., Szoke, J., Szofran, F.R., J. Cryst. Growth 235, 161 (2002).
20Schweizer, M., Volz, M.P., Cobb, S.D., Vujisic, L., Motakef, S., Szoke, J., Szofran, F.R., J. Cryst. Growth 237–239, 2107 (2002).
21Volz, M.P., Schweizer, M., Kaiser, N., Cobb, S.D., Vujisic, L., Motakef, S., Szofran, F.R., J. Cryst. Growth 237–239, 1844 (2002).
22Pätzold, O., Jenkner, K., Scholz, S., Cröll, A., J. Cryst. Growth 277, 37 (2005).
23Fiederle, M., Duffar, T., Garandet, J.P., Babentsov, V., Fauler, A., Benz, K.W., Dusserre, P., Corregidor, V., Dieguez, E., Delaye, P., Roosen, G., Chevrier, V., Launay, J.C., J. Cryst. Growth 267, 429 (2004).
24Volz, M.P., Schweizer, M., Raghothamachar, B., Dudley, M., Szoke, J., Cobb, S.D., Szofran, F.R., J. Cryst. Growth 290, 446 (2006).

Related content

Powered by UNSILO

Detached Bridgman Growth—A Standard Crystal Growth Method with a New Twist

  • Arne Cröll and Martin P. Volz

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.