Skip to main content Accessibility help
×
Home

CVD diamond—Research, applications, and challenges

  • Robert J. Nemanich (a1), John A. Carlisle (a2), Atsushi Hirata (a3) and Ken Haenen (a4)

Abstract

Diamond is a unique material that often exhibits extreme properties compared to other materials. Discovered about 30 years ago, the use of hydrogen in plasma-enhanced chemical vapor deposition (CVD) has enabled the growth and coating of diamond in film form on various substrate materials. CVD diamond research has been actively continued subsequently to develop new understanding and approaches for the growth and processing of this fascinating material. Currently, the study and development of diamond films has enabled a wide range of applications based on the combination of unique and extreme properties of diamond and the variety of film properties obtainable through tuning the microstructure, morphology, impurities, and surfaces. This issue of MRS Bulletin introduces the latest research, recent applications, and the challenges ahead for CVD diamond films.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      CVD diamond—Research, applications, and challenges
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      CVD diamond—Research, applications, and challenges
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      CVD diamond—Research, applications, and challenges
      Available formats
      ×

Copyright

References

Hide All
1.Derjaguin, B.V., Spitsyn, B.V., “A Technique of Regrowth of Diamond’s Facet,” USSR Patent N 339134 No. 17 (1980).
2.Eversole, W.G., “Synthesis of Diamond,” US Patent 3030188 (1962).
3.Angus, J.C., Will, H.A., Stanko, W.S., J. Appl. Phys. 39, 2915 (1968).
4.Spitsyn, B.V., Bouilov, L.L., Derjaguin, B.V., J. Cryst. Growth 52, 219 (1981).
5.Matsumoto, S., Sato, Y., Kamo, M., Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).
6.Kamo, M., Sato, Y., Matsumoto, S., Setaka, N., J. Cryst. Growth 62, 642 (1983).
7.Capelli, M.A., Paul, P.H., J. Appl. Phys. 67, 2596 (1990).
8.Himpsel, F.J., Knapp, J.A., van Vechten, J.A., Eastman, D.E., Phys. Rev. B: Condens. Matter 20, 624 (1979).
9.van der Weide, J., Zhang, Z., Baumann, P.K., Wensell, M.G., Bernholc, J., Nemanich, R.J., Phys. Rev. B: Condens. Matter 50, 5803R (1994).
10.Cui, J.B., Ristein, J., Ley, L., Phys. Rev. Lett. 81, 429 (1998).
11.Landstrass, M.I., Ravi, K.V., Appl. Phys. Lett. 55, 975 (1989).
12.Maier, F., Riedel, M., Mantel, B., Ristein, J., Ley, L., Phys. Rev. Lett. 85, 3472 (2002).
13.Bachmann, P.K., Leers, D., Lydtin, H., Diam. Relat. Mater. 1, 1 (1991).
14.Wild, C., Kohl, R., Herres, N., Müller-Sebert, W., Koidl, P., Diam. Relat. Mater. 3, 373 (1994).
15.Nemanich, R.J., Glass, J.T., Lucovsky, G., Shroder, R.E., J. Vac. Sci. Technol., A 6, 1783 (1988).
16.Knight, D.S., White, W.B., J. Mater. Res. 4, 385 (1989).
17.Prawer, S., Nemanich, R.J., Philos. Trans. R. Soc. Lond. A 362, 2537 (2004).
18.Collins, A.T., Diam. Relat. Mater. 1, 457 (1992).
19.Zhu, W., Kochanski, G.P., Jin, S., Seibles, L., J. Vac. Sci. Technol. B 14, 2011 (1996).
20.Maki, T., Shikama, S., Komori, M., Sakaguchi, Y., Sakuta, K., Kobayashi, T., Jpn. J. Appl. Phys. 31, L1446 (1992).
21.Garrido, J.A., Nebel, C.E., Todt, R., Rösel, G., Amann, M.C., Stutzmann, M., Snidero, E., Bergonzo, P., Appl. Phys. Lett. 82, 988 (2003).
22.Kawarada, H., Aoki, M., Itoh, I., Appl. Phys. Lett. 65, 1563 (1994).
23.Maier, F., Riedel, M., Mantel, B., Ristein, J., Ley, L., Phys. Rev. Lett. 85, 3472 (2002).
24.Zhang, W.Y., Ristein, J., Ley, L., Phys. Rev. E 78, 041603 (2008).
25.Edmonds, M.T., Wanke, M., Tadich, A., Vulling, H.M., Rietwyk, K.J., Sharp, P.L., Stark, C.B., Smets, Y., Schenk, A., Wu, Q.-H., Ley, L., Pakes, C.I., J. Chem. Phys. 136, 124701 (2012).
26.Strobel, P., Riedel, M., Ristein, J., Ley, L., Nature 430, 439 (2004).
27.Dankerl, M., Hauf, M.V., Stutzmann, M., Garrido, J.A., Phys. Status Solidi A 209, 1631 (2012).
28.Sato, H., Kasu, M., Diam. Relat. Mater. 31, 47 (2013).
29.Kawarada, H., Jpn. J. Appl. Phys. 51, 090111 (2012).
30.Russell, S.A.O., Cao, L., Qi, D.C., Tallaire, A., Crawford, K.G., Wee, A.T.S., Moran, D.A.J., Appl. Phys. Lett. 103, 202112 (2013).
31.Hauf, M.V., Simon, P., Seifert, M., Holleitner, A.W., Stutzmann, M., Garrido, J.A., Phys. Rev. B: Condens. Matter 89, 115426 (2014).
32.Barjon, J., Jomard, F., Morata, S., Phys. Rev. B: Condens. Matter 89, 045201 (2014).
33.Magyar, A., Hu, W., Shanley, T., Flatté, M.E., Hu, E., Aharonovich, I., Nat. Commun. 5, 3523 (2014).
34.Isberg, J., Gabrysch, M., Hammersberg, J., Majdi, S., Kovi, K.K., Twitchen, D.J., Nat. Mater. 12, 760 (2013).
35.Ščajev, P., Nargelas, S., Jarašiūnas, K., Kisialiou, I., Ivakin, E., Deferme, W., D’Haen, J., Haenen, K., Phys. Status Solidi A 210, 2022 (2013).
36.Bogdan, G., De Corte, K., Deferme, W., Haenen, K., Nesládek, M., Phys. Status Solidi A 203, 3063 (2006).
37.Haenen, K., Lazea, A., Nesládek, M., Koizumi, S., Phys. Status Solidi (Rapid Research Letters) 3, 208 (2009).
38.Lazea, A., Mortet, V., D’Haen, J., Geithner, P., Ristein, J., D’Olieslaeger, M., Haenen, K., Chem. Phys. Lett. 454, 310 (2008).
39.Williams, O.A., Daenen, M., D’Haen, J., Haenen, K., Nesládek, M., Gruen, D.M., Diam. Relat. Mater. 15, 654 (2006).
40.Heyer, S., Janssen, W., Turner, S., Lu, Y.-G., Yeap, W.S., Verbeeck, J., Haenen, K., Krueger, A., ACS Nano (2014), doi 10.1021/nn500573x.

Keywords

CVD diamond—Research, applications, and challenges

  • Robert J. Nemanich (a1), John A. Carlisle (a2), Atsushi Hirata (a3) and Ken Haenen (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed