Skip to main content Accessibility help
×
Home

Crystal Plasticity from Dislocation Dynamics

  • Vasily V. Bulatov, Meijie Tang and Hussein M. Zbib

Extract

The strength of a material is its ability to withstand an applied load without breaking or changing its shape. The strength of an ideal, defect-free crystal can be very high, but except for rather exotic materials such as micrometer-sized whiskers, crystals will fracture and/or deform plastically under stresses that are well below their ideal strength limits.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Crystal Plasticity from Dislocation Dynamics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Crystal Plasticity from Dislocation Dynamics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Crystal Plasticity from Dislocation Dynamics
      Available formats
      ×

Copyright

References

Hide All
1Orowan, E.Z. Phys. 89 (1934) p.605.
2Polanyi, M.Z. Phys. 89 (1934) p.85.
3Taylor, G.I.Proc. R. Soc. London Ser. A 145 (1934) p.362.
4Hirsch, P.B.Horne, R.W. and Whelan, M.J.Philos. Mag. 1 (1956) p.677.
5Dash, W.C. in Dislocations and Mechanical Properties of Crystals, edited by Fisher, J.C.Johnston, W.G.Thomson, R. and Vreeland, T. Jr (Wiley, New York, 1957) p.57.
6Lepinoux, J. and Kubin, L.P.Scripta Metall. 21 (1987) p.833.
7Amodeo, R.J. and Ghoniem, N.M.Phys. Rev. B 41 (1990) p.6958.
8Kubin, L.P. and Canova, G.R.Scripta Metall. Mater. 27 (1992) p.957.
9Hirth, J.P.Rhee, M. and Zbib, H.M.J.Comput.-Aided Mater. Des. 3 (1996) p.164.
10Schwarz, K.W.Phys. Rev. Lett. 78 (1997) p.4785.
11Hirth, J.P. and Lothe, J., Theory of Dislocations (John Wiley & Sons, New York, 1982).
12Rhee, M.Zbib, H.M.Hirth, J.P.Huang, H. and Rubia, T.Diaz de la, Model. Simul. Mater. Sci. Eng. 6 (4)(1998) p.467.
13Wickham, L.K.Schwarz, K.W. and Stolken, J.S.Phys. Rev. Lett. 83 (1999) p.4574.
14Kubin, L.P.Devincre, B. and Tang, M.J.Comput.-Aided Mater. Des. 5 (1998) p.31.
15Devincre, B. and Kubin, L.P.Mater. Sci. Eng., A 234–236 (1997) p.8.
16Fivel, M.C.Robertson, C.F.Canova, G.R. and Boulanger, L.Acta Mater. 46 (1998) p. 6183.
17Lemarchand, C.Devincre, B.Kubin, L.P. and Chaboche, J.L. in Multiscale Modelling of Materials, edited by Bulatov, V.V.Rubia, T. Diaz de la, Phillips, R.Kaxiras, E. and Ghoniem, N. (Mater. Res. Soc. Symp. Proc. 538, Warrendale, PA, 1999) p.63.
18Cleveringa, H.H.M.Giessen, E. Van der, and Needleman, A.Int. J. Plasticity 15 (1999) p.837.
19Yasin, H.Zbib, H.M. and Khaleel, M.A. Mater. Sci. Eng., A (2001) in press.
20Hughes, D.A.Khan, S.M.A.Godfrey, A. and Zbib, H.M. Mater. Sci. Eng., A (2001) in press.
21Shizawa, K. and Zbib, H.M. Mater. Sci. Eng., A (2001) in press.
22Zbib, H.M.Rhee, M.Hirth, J.P. and Rubia, T. Diaz de la, J. Mech. Behav. Mater. 11 (2000) p.251.
23Rubia, T. Diaz de la, Zbib, H.M.Khraishi, T.A.Wirth, B.D.Victoria, M. and Caturla, M.J.Nature 406 (2000) p.871.
24Indenbom, V.L. and Lothe, J.Elastic Strain Fields and Dislocation Mobility, edited by Agranovich, V.M. and Maradudin, A.A. Vol.31 of the series Modern Problems in Condensed Matter Sciences (North-Holland, Amsterdam, 1992).
25Tang, M.Fivel, M.C. and Kubin, L.P. Mater. Sci. Eng., A (2001) in press.
26Argon, A.S. (private communication).
27Hirth, J.P.Zbib, H.M. and Lothe, J.Model. Simul. Mater. Sci. Eng. 6 (1998) p.165.
28Holt, D.J.Appl. Phys. 41 (1970) p.3197.
29Walgraef, D. and Aifantis, E.C.Int. J. Eng. Sci. 23 (1985) p.1351.
30Mindlin, R.D.Arch. Rat. Anal. 16 (1964) p.51.
31Dillon, O.W. and Kratochvil, J.Int. J. Solids Struct. 6 (1970) p.1513.
32Aifantis, E.C.Trans. ASME J. Eng. Mater. Technol. 106 (1984) p.326.
33Zbib, H.M. and Aifantis, E.C.Acta Mech. 92 (1992) p.209.
34Fleck, N.A.Muller, G.M.Ashby, M.F. and Hutchinson, J.W.Acta Metall. Mater. 42 (1994) p.475.
35Arsenlis, A. and Parks, D.M.Acta Mater. 47 (1999) p.1597.
36Anthony, K.-H. and Azirhi, A.Int. J.Eng. Sci. 33 (1995) p.2137.
37Shizawa, K. and Zbib, H.M.Int. J. Plasticity 15 (1999) p.899.
38Kroner, E.Kontinuumstheorie der Versetzungen und Eigenspanungen (Springer-Verlag, Berlin, 1958).

Crystal Plasticity from Dislocation Dynamics

  • Vasily V. Bulatov, Meijie Tang and Hussein M. Zbib

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed