Skip to main content Accessibility help

Crystal Growth from the Melt under External Force Fields

  • P. Rudolph and K. Kakimoto


The present and future demands of industrial bulk crystal growth from the melt are concentrated on improved crystal quality, increased yield, and reduced costs. To meet these challenges, the size of the melt volume must be markedly increased. As a result, violent convective perturbations appear within the melts due to turbulent heat and mass flows. They disturb the single crystal growth and give rise to compositional inhomogeneities. The application of external force fields is an effective method to dampen and control these flows. After introducing different stabilizing variants, such as constant and accelerated melt rotation, mechanical vibrations, and electric current, this article focuses on the use of magnetic fields. Nonsteady fields became very popular because, in this case, the needed strength of the magnetic induction is much lower than for steady fields. A new low-energy low-cost technology that combines heat and magnetic field generation in one module placed close to the melt crucible is introduced.



Hide All
1Müller, G., Fundamentals of Melt Growth, in Perspectives on Inorganic, Organic, and Biological Crystal Growth: From Fundamentals to Applications, Skowronski, M., DeYoreo, J.J., Wang, C.A., Eds. (AIP Conference Proc. 916, New York, USA, 2007) pp. 333.
2Brice, J.C., Rudolph, P., Crystal Growth, in Ullmann's Encyclopedia of Industrial Chemistry, 7th edition, electronic release (Wiley-VCH, Weinheim, Germany, 2007).
3Hurle, D.T.J., Series, R.W., Use of a Magnetic Field in Melt Growth, in Handbook of Crystal Growth, Vol. 2a, Hurle, D.T.J., Ed. (Elsevier, North-Holland, 1994) pp. 259285.
4Kakimoto, K., Modeling of Fluid Dynamics in the Czochralski Growth of Semiconductor Crystals, in Crystal Growth—from Fundamentals to Technology, Müller, G., Metois, J.-J., Rudolph, P., Eds. (Elsevier, Amsterdam, 2004) pp. 169186.
5Dold, P., Benz, K.W., Prog. Cryst. Growth Charact. Mater. 38, 7 (1999).
6Spitzer, K., Prog. Cryst. Growth Charact. Mater. 38, 39 (1999).
7Price, M.W., Andrews, R.N., Su, C.H., Lehoczky, S.L., Szofran, F.R., J. Cryst. Growth 137, 201 (1994).
8Moreno, A., Quiroz-Garcia, B., Yokaichiya, F., Stojanoff, V., Rudolph, P., Cryst. Res. Technol. 42, 231 (2007).
9Muiznieks, A., Krauze, A., Nacke, B., J. Cryst. Growth 303, 211 (2007).
10Tiller, W.A., Jackson, K.A., Rutter, J.W., Chalmers, B., Acta Metall. 1, 428 (1953).
11Müller, G., Neumann, G., Weber, W., J. Cryst. Growth 119, 8 (1992).
12Regel, L.L., Wilcox, W.R., Processing by Centrifugation (Springer, Heidelberg, Germany, 2001).
13Wilke, K.-Th., Bohm, J., Kristallzüchtung (Verlag Harri Deutsch-Thun, Frankfurt/Main, Germany, 1989).
14Levich, V.G., Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1961).
15Rossby, H.T., J. Fluid Mech. 36, 309 (1969).
16Scheel, H.J., Schulz-DuBois, E.O., J. Cryst. Growth 8, 304 (1971).
17Rytz, D., Scheel, H.J., J. Cryst. Growth 59, 468 (1982).
18Capper, P., Prog. Cryst. Growth Charact. 28, 1 (1994).
19Capper, P., Use of Forced Mixing via the Accelerated Crucible Rotation Technique (ACRT) in Bridgman Growth of Cadmium Mercury Telluride (CMT), in Crystal Growth Technology, Scheel, H.J., Capper, P., Eds. (Wiley-VCH, Weinheim, Germany, 2008) pp. 283306.
20Distanov, V.E., Nenashev, B.G., Kirdyashkin, A.G., Serboulenko, M.G., J. Cryst. Growth 235, 457 (2002).
21Liu, Y.C., Roux, B., Lan, C.W., J. Cryst. Growth 304, 236 (2007).
22Bloedner, R.U., Gille, P., J. Cryst. Growth 130, 181 (1993).
23Gille, P., Presia, M., Bloedner, R.U., Puhlmann, N., J. Cryst. Growth 130, 188 (1993).
24Bairava Ganesh, R., Matsuo, H., Kangawa, Y., Arafune, K., Ohshita, Y., Yamaguchi, M., Kakimoto, K., Cryst. Growth Des. 8, 2525 (2008).
25Rosenberger, F., Fundamentals of Crystal Growth I (Springer-Verlag, Berlin, Germany, 1979).
26Hurle, D.T.J., Jakeman, E., J. Cryst. Growth 5, 227 (1969).
27Müller, G., Ostrogorsky, A., Convection in the Melt Growth, in Handbook of Crystal Growth, Vol. 2b, Hurle, D.T.J., Eds. (North Holland, Amsterdam, The Netherlands, 1994) pp. 709819.
28Liu, W.S., Wolf, M.F., Elwell, D., Feigelson, R.S., J. Cryst. Growth 82, 589 (1987).
29Lu, Y.C., Shiau, J.J., Feigelson, R.S., Route, R.K., J. Cryst. Growth 102, 807 (1990).
30Zharikov, E.V., Prihodko, L.V., Storozjev, N.R., J. Cryst. Growth 99, 910 (1990).
31Fedyushkin, A., Bourago, N., Polezhaev, V., Zharikov, E., J. Cryst. Growth 275, e1557 (2005).
32Dold, P., Control of Fluid Flow and Segregation in Semiconductor Crystal Growth from the Melt, thesis, University of Freiburg (2005).
33Kapustin, A.P., Kovaljunajte, V.E., Kristallografija 7, 613 (1962).
34Bates, H.E., Weinstein, M., J. Electrochem. Soc. 114, 259 (1967).
35Kozhemyakin, G.N., Kosushkin, V.G., Kurochkin, S.Y., J. Cryst. Growth 121, 240 (1992).
36Kozhemyakin, G.N., J. Cryst. Growth 257, 237 (2003).
37Pfann, W.G., Wagner, R.S., Trans. Met. Soc. AIME 224, 1139 (1962).
38Pfann, W.G., Zone Melting, 2nd edition (Wiley, New York, 1966).
39Wang, X., Ma, N., Bliss, D.F., Iseler, G.W., Int. J. Heat Mass Transfer 49, 3429 (2006).
40Holmes, D.E., Gatos, H.C., J. Appl. Phys. 52, 2971 (1981).
41Jasinski, T., Witt, A.F., J. Cryst. Growth 71, 295 (1985).
42Golubev, L.V., Egorov, A.V., Novikov, S.V., Shmartsev, Yu.V., J. Cryst. Growth 146, 277 (1995).
43Reiche, P., Bohm, J., Hermoneit, B., Rudolph, P., Schalge, R., Schultze, D., J. Cryst. Growth 108, 759 (1991).
44Kim, K.M., Witt, A.F., Gatos, H.C., J. Elecrochem. Soc. 120, 1119 (1973).
45Brush, L.N., J. Cryst. Growth 310, 4238 (2008).
46Series, R.W., Hurle, D.T.J., J. Cryst. Growth 113, 305 (1991).
47Utech, H.P., Flemings, M.C., J. Appl. Phys. 37, 2021 (1966).
48Chedzey, H.A., Hurle, D.T.J., Nature 210, 933 (1966).
49Dorfman, J.G., Litjo s vraschtscheniem (rotational casting), (Metallurgizdat, Moscva, USSR, 1934).
50Mullin, J.B., Hulme, K.F., J. Electron. Control 4, 170 (1958).
51Gondi, P., Scacciati, G., Nuova Cimento 21, 829 (1961).
52Johnston, W.C., Tiller, W., Trans. AIME 221, 331 (1961); 224, 214 (1962).
53Hoshi, K., Suzuki, T., Okubo, Y., Isawa, N., CZ silicon crystal grown in transverse magnetic fields, in Extended Abstracts Electrochem. Soc. Spring Meeting V01.80–1, (Electrochemical Society, Pennington, NJ, 1980) pp. 811815.
54Suzuki, T., Isawa, N., Okubo, Y., Hoshi, K., Czochralski silicon-crystals grown in a transverse magnetic field, in Semiconductor Silicon 1981, Huff, H.R., Kriegler, R.J., Takeishi, Y., Eds. (Electrochemical Society, Pennington, NJ, 1981) pp. 213216.
55Terashima, K., Fukuda, T., J. Cryst. Growth 63, 423 (1983).
56Hofmann, D., Mosel, M., Müller, G., Influence of a Vertical Magnetic Field on the LEC Growth and Properties of 3-inch s.i. InP Crystals, in Proc. of the 5th Conf. on Semi-Insulating III-V Materials, Malmö 1988, Grossmann, G., Ledebo, L., Eds. (Hilger, Bristol, UK, 1988) pp. 429434.
57Ozawa, S., Kimura, T., Kobayashi, J., Fukuda, T., Appl. Phys. Lett. 50, 329 (1987).
58Bliss, D.F., Hilton, R.M., Bachowski, S., Adamski, J.A., J. Electron. Mater. 20, 967 (1991).
59Shiraishi, Y., Takano, K., Matsubara, J., Iida, T., Takase, N., Machida, N., Kuramoto, M., Yamagishi, H., J. Cryst. Growth 229, 17 (2001).
60Cröll, A., Szofran, F.R., Dold, P., Benz, K.W., Lehoczky, S.L., J. Cryst. Growth 183, 554 (1998).
61Park, Y.J., Min, S.K., Hahn, S.H., Yoon, J.K., J. Cryst. Growth 154, 10 (1995).
62Kohda, H., Yamada, K., Nakanishi, H., Kobayashi, T., Osaka, J., Hoshikawa, K., J. Cryst. Growth 71, 813 (1985).
63Kim, K.M., Smetana, P., J. Appl. Phys. 58, 2731 (1985).
64Yi, K.W., Kakimoto, K., Niu, Z.G., Eguchi, M., Noguchi, H., Nakamura, S., Mukai, K., J. Electrochem. Soc. 143, 722 (1996).
65Series, R.W., J. Cryst. Growth 7, 92 (1989).
66Hirata, H., Hoshikawa, K., J. Cryst. Growth 98, 777 (1989).
67Watanabe, M., Eguchi, M., Wang, W., Hibiya, T., Kuragaki, S., J. Cryst. Growth 237, 1657 (2002).
68Vizman, D., Watanabe, M., Friedrich, J., Müller, G., J. Cryst. Growth 303, 221 (2007).
69Miyazawa, Y., Morita, S., Sekiwa, H., J. Cryst. Growth 166, 286 (1996).
70de Rango, P., Lee, M., Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P., Pernet, M., Nature 349, 770 (1991).
71Ma, Y., Watanabe, K., Awaji, S., Motokawa, M., Appl. Phys. Lett. 77, 192 (2000).
72Mwaba, M.S., Gu, J., Golriz, M.R., J. Cryst. Growth 303, 381 (2007).
73Wang, J., Zhang, K., Peng, Z., Chen, Q., J. Cryst. Growth 266, 500 (2004).
74Sazaki, G., Yoshida, E., Komatsu, H., Nakada, T., Miyashita, S., Watanabe, K., J. Cryst. Growth 173, 231 (1997).
75Ataka, M., Katoh, E., Wakayama, N.I., J. Cryst. Growth 173, 592 (1997).
76Hirata, H., Hoshikawa, K., Inoue, N., J. Cryst. Growth 70, 330 (1984).
77Gelfgat, Yu. M., Gorbunov, L.A., Magnetohydrodynamics 31, 207 (1995).
78Liu, L., Kakimoto, K., Int. J. Heat Mass Transfer 48, 4481, 4492 (2005).
79Kalaev, V.V., J. Cryst. Growth 303, 203 (2007).
80Krauze, A., Muiznieks, A., Muhlbauer, A., Wetzel, Th., Ammon, W.v., J. Cryst. Growth 262, 157 (2004).
81Ozoe, H., Iwamoto, M., J. Cryst. Growth 142, 236 (1994).
82Kakimoto, K., Eguchi, M., Watanabe, M., Hibiya, T., J. Cryst. Growth 102, 16 (1990).
83Tanaka, M., Hasebe, M., Saito, N., J. Cryst. Growth 180, 487 (1997).
84Shaskow, Y.M., Shulebina, N.Y., Fiz. Khim. Obrab. Mater. 1, 34 (1972).
85Abritska, M.Y., Gorbunov, L.A., Magnetohydrodynamics 28, 398 (1992).
86Ono, N., Trapaga, G., J. Electrochem. Soc. 144, 764 (1997).
87Mitric, A., Duffar, Th., J. Cryst. Growth 310, 1511 (2008).
88Galindo, V., Gerbeth, G., Von Ammon, W., Tomzig, E., Virbulis, J., Crystal Growth Melt Flow Control by Means of Magnetic Fields, in 4th Int. PAMIR Conf. on Magnetohydrodynamics at Dawn of Third Millenium (Presq'ile de Giens, France, 2000) pp. 725730.
89Schwesig, P., Hainke, M., Friedrich, J., Mueller, G., J. Cryst. Growth 266, 224 (2004).
90Yesilyurt, S., Motakef, S., Grugel, R., Mazuruk, K., J. Cryst. Growth 263, 80 (2004).
91Galindo, V., Grants, I., Lantzsch, R., Pätzold, O., Gerbeth, G., J. Cryst. Growth 303, 258 (2007).
92Lantzsch, R., Grants, I., Galindo, V., Pätzold, O., Gerbeth, G., Stelter, M., Cröll, A., Magnetohydrodynamics 42, 445 (2006).
93Lyubimova, T.P., Cröll, A., Dold, P., Khlybov, O.A., Fayzrakhmanova, I.S., J. Cryst. Growth 266, 404 (2004).
94Wetzel, Th., Fortschr.-Ber. VDI, 9 (328), 1 (2001).
95Lantzsch, R., Grants, I., Pätzold, O., Stelter, M., Gerbeth, G., J. Cryst. Growth, 310, 1518 (2008).
96Fischer, B., Friedrich, J., Kupfer, C., Vizman, D., Müller, G., Experimantal and Numerical Analysis of the Influence of a Rotating Magnetic Field on Convection in Rayleigh-Bénard Configurations, in Transfer Phemomena in Magnetohydrodynamic and Electroconducting Flows, Alemany, A., Marty, P., Thibault, J.P., Eds. (Kluwer Academic Publishers, 1999) pp. 279294.
97Klein, O., Druet, P.-E., Lechner, Ch., Philip, P., Sprekels, J., Frank-Rotsch, Ch., Kieβling, F.-M., Miller, W., Rehse, U., Rudolph, P., J. Cryst. Growth 310, 1523 (2008).
98Brückner, F.U., Schwerdtfeger, K., J. Cryst. Growth 139, 351 (1994).
99Rudolph, P., J. Cryst. Growth 310, 1298 (2008).
100Frank-Rotsch, Ch., Jockel, D., Ziem, M., Rudolph, P., J. Cryst. Growth 310, 1505 (2008).
101Rudolph, P., Frank-Rotsch, Ch., Kiessling, F.M.Miller, W., Rehse, U., Klein, O., Lechner, Ch., Sprekels, J., Nacke, B., Kasjanow, H., Lange, P., Ziem, M., Lux, B., Czupalla, M., Root, O., Trautmann, V., Bethin, G., Crystal Growth in Heater-Magnet Modules—From Concept to Use, in Proceedings of the International Scientific Colloquium “Modelling for Electromagnetic Processing” (MEP 08), Hanover, October 27–29, 2008, pp. 7984.
102Mühe, A., Altekrüger, B., Vonhoff, A., patent descriptions DE 10349339 A1 (2003); US 0087125 A1 (2004).
103Frank-Rotsch, Ch., Rudolph, P., J. Cryst. Growth, February 10, 2009, doi:10.1016/j.jcrysgro.2009.01.139.

Related content

Powered by UNSILO

Crystal Growth from the Melt under External Force Fields

  • P. Rudolph and K. Kakimoto


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.