Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:39:25.530Z Has data issue: false hasContentIssue false

Crystal Growth and Optical Properties of AgGaS2 and AgGaSe2

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Silver gallium sulfide (AgGaS2), silver gallium selenide (AgGaSe2), and silver gallium indium selenide (AgGaxIn(1 − x)Se2) are unique nonlinear crystals suitable for a wide range of three-wave mixing applications. They combine strong nonlinear coupling with phase matching across a wide (0.5 − 12.5 μm) transmission range. These properties provide the basis for CO2 laser harmonic-generator (HG), visible (VIS), and near-infrared (NIR) pumped opticalparametric-oscillator (OPO) and sumand difference-frequency-generator (SFG/DFG) systems for producing tunable laser radiation from approximately 0.65 to 12 μm. A wide range of pump lasers is now available, including diode lasers capable of direct pumping of AgGaS2 and efficient diode-pumped lasers for pumping any of these crystals. Significant progress in material characteristics and nonlinear optical (NLO) performance has been accomplished. Bulk absorption for production-quality AgGaS2 is ~0.01 − 0.02 cm across the 0.8−9-μm region. Exceptional crystals of AgGaS2 have absorption <0.0005 cm−1 at 1.064 μm, and even at 0.633 μm, absorption is ~0.015 cm−1. Figure 1 illustrates the late 1980s vintage and present transmission of AgGaS2. For AgGaSe2, absorption for production material ranges from 0.010 cm to 0.018 cm−1 from 1 μm to 11 μm. Certain crystals can have 0.007−0.008 cm−1 absorption at 10.6 μm. The NIR transmission curves for AgGaSe2 and AgGaxIn(1 − x)Se2 appear in Figure 2. This combination of optical properties, along with their good physical characteristics, make these two crystals versatile for NLO applications spanning the VIS to the infrared (ir).

Type
Emergence of Chalcopyrites as Nonlinear Optical Materials
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Byer, R.L., in Treatise in Quantum Electronics, edited by Rabin, H. and Tang, C.L. (Academic Press, New York, 1973) p. 587.Google Scholar
2.Bhar, G.C., Das, S., Chatterjee, U., Dutta, P.K., and Andreev, Y.N., Appl. Phys. Lett. 63 (1993) p. 1316.CrossRefGoogle Scholar
3.Fan, Y.X., Eckardt, R.C., and Byer, R.L., in Topical Meeting on Solid State Lasers (Optica Society of America, Zig Zag, Oregon, 1986).Google Scholar
4.Quarles, G.J., Marquardt, C.L., and Esterowitz, L., in LEOS (Optical Society of America, 1990).Google Scholar
5.Barnes, N.P., Gettemy, D.J., Hietanen, J.R., and Iannini, R.A., in CLEO/IEEE Conf. (Optical Society of America, Baltimore, MD, 1987).Google Scholar
6.Simon, U., Miller, C.E., Bradley, C.C., Hulet, R.G., Curl, R.F., and Tittel, F.K., Opt. Lett. 18 (1993) p. 1062.CrossRefGoogle Scholar
7.Simon, U., Tittel, F.K., and Goldberg, L., Opt. Lett. 18 (1993) p. 1931.CrossRefGoogle Scholar
8.Moore, F.T. and Koch, K., IEEE J. Quantum Electron. 28 (3) (1993).Google Scholar
9.Boyd, G.D., Rasper, H.M., McFee, J.H., and Storz, F.G., IEEE J. Quantum Electron. 8 (12) (1972) p. 900.CrossRefGoogle Scholar
10.Eckardt, R.C., Fan, Y.X., Byer, R.L., Route, R.K., Feigelson, R.S., and van der Laan, Jan, Appl. Phys. Lett. 47 (8) (1985) p. 786.CrossRefGoogle Scholar
11.Harris, S.E., Proc. IEEE 57 (1969) p. 2096.CrossRefGoogle Scholar
12.Eckardt, R.C., Fan, Y.X., Byer, R.L., Marquardt, C.L., Storm, M.E., and Esterowitz, L., Appl. Phys. Lett. 49 (1986) p. 608.CrossRefGoogle Scholar
13.Byer, R.L., in Annual Review of Materials Science, edited by Huggins, R.A., Bube, R.H., and Roberts, R.W. (Annual Reviews, Palo Alto, CA, 1974).Google Scholar
14.Kildal, H. and Mikkelsen, J.C., Opt. Commun. 9 (1973) p. 315.CrossRefGoogle Scholar
15.Byer, R.L., Choy, M., Herbst, R., Chemla, D., and Feigelson, R.S., Appl. Phys. Lett. 24 (1974) p. 65.CrossRefGoogle Scholar
16.Route, R.K., Feigelson, R.S., and Raymaker, R.J., J. Cryst. Growth 24/25 (1974) p. 390.CrossRefGoogle Scholar
17.Route, R.K., Feigelson, R.S., and Raymaker, R.J., J. Cryst. Growth 29 (1975) p. 125.CrossRefGoogle Scholar
18.Route, R.K., Feigelson, R.S., Raymaker, R.J., and Choy, M., J. Cryst. Growth 33 (1976) p. 239.CrossRefGoogle Scholar
19.Feigelson, R.S., J. Phys. C 3 (1975) p. 57.Google Scholar
20.Iseler, G.W., J. Cryst. Growth 41 (1977) p. 146.CrossRefGoogle Scholar
21.Korczak, P. and Staff, C.B., J. Cryst. Growth 24/25 (1974) p. 388.CrossRefGoogle Scholar
22.Catella, G.C., Shiozawa, L.R., Hietanen, J.R., Eckardt, R.C., Route, R.K., Feigelson, R.S., Cooper, D.G., and Marquardt, C.L., Appl. Opt. 32 (21) (1993).CrossRefGoogle Scholar
23.Beasley, J.D., Appl. Opt. 33 (1994) p. 1000.CrossRefGoogle Scholar
24.Roberts, D.A., IEEE J. Quantum Electron. 28 (10) (1992) p. 2057.CrossRefGoogle Scholar
25.Marquardt, C.L., Cooper, D.G., Budni, P.A., Knights, M.G., Schepler, K.L., DeDomenico, R., and Catella, G.C., Appl. Opt. 33 (15) (1994) p. 3192.CrossRefGoogle Scholar
26.Roberts, D.A., Appl. Opt. 35 (24) (1996). A comprehensive review of available crystal properties is available in the Cleveland Crystals Information Sheet “Silver Gallium Selenide and Silver Gallium Sulfide.” On-line phasematching calculations are also available via a bulletin board service, which is complemented by data available at the website, www.clevelandcrystals.com.Google Scholar
27.Mikkelsen, J.C. Jr., MRS Bulletin XII (1977) p. 497.CrossRefGoogle Scholar
28.Zhuze, V.P., Sergeeva, V.M., and Shtrum, E.L., Sov. Phys. Tech. Phys. 3 (1958) p. 1925.Google Scholar
29.Eimerl, D., IEEE J. Quantum Electron. (1987).Google Scholar
30.Dmitriev, V.G., Gurzadyan, G.G., and Nikogosyan, D.N., in Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, 1997); ibid (private communication).CrossRefGoogle Scholar
31.Zondy, J-J. and Touahri, D., preprint, 1997.Google Scholar
32.Shori, R. (private communication).Google Scholar
33.Zondy, J-J., Touahri, D., and Acef, O., in OSA TOPS on Advanced Solid State Lasers I, edited by Payne, S.A. and Pollock, C. (Optical Society of America, San Francisco, 1996) p. 164.Google Scholar
34.Catella, G.C. and Burlage, D., in Proc. O-E Laser (Optical Society of America, 1993).Google Scholar