Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T03:33:47.425Z Has data issue: false hasContentIssue false

Cryogenic electron microscopy for quantum science

Published online by Cambridge University Press:  10 December 2019

Andrew M. Minor
Affiliation:
University of California, Berkeley, and Lawrence Berkeley National Laboratory, USA; aminor@berkeley.edu
Peter Denes
Affiliation:
Lawrence Berkeley National Laboratory, USA; pdenes@lbl.gov
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University, USA; dm24@cornell.edu
Get access

Abstract

Electron microscopy is uniquely suited for atomic-resolution imaging of heterogeneous and complex materials, where composition, physical, and electronic structure need to be analyzed simultaneously. Historically, the technique has demonstrated optimal performance at room temperature, since practical aspects such as vibration, drift, and contamination limit exploration at extreme temperature regimes. Conversely, quantum materials that exhibit exotic physical properties directly tied to the quantum mechanical nature of electrons are best studied (and often only exist) at extremely low temperatures. As a result, emergent phenomena, such as superconductivity, are typically studied using scanning probe-based techniques that can provide exquisite structural and electronic characterization, but are necessarily limited to surfaces. In this article, we focus not on the various methods that have been used to examine quantum materials at extremely low temperatures, but on what could be accomplished in the field of quantum materials if the power of electron microscopy to provide structural analysis at the atomic scale was extended to extremely low temperatures.

Type
Cryogenic Electron Microscopy in Materials Science
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, P., MRS Bull . 42, 698 (2017).CrossRefGoogle Scholar
Assig, M., Etzkorn, M., Enders, A., Stiepany, W., Ast, C.R., Kern, K., Rev. Sci. Instrum. 84, 033903 (2013).CrossRefGoogle Scholar
Rosenthal, E.P., Andrade, E.F., Arguello, C.J., Fernandes, R.M., Xing, L.Y., Wang, X.C., Jin, C.Q., Millis, A.J., Pasupathy, A.N., Nat. Phys. 10, 225 (2014).CrossRefGoogle Scholar
Zhao, L., Deng, H., Korzhovska, I., Begliarbekov, M., Chen, Z., Andrade, E., Rosenthal, E., Pasupathy, A., Oganesyan, V., Krusin-Elbaum, L., Nat. Commun. 6, 8279 (2015).CrossRefGoogle Scholar
Pan, S.H., O’Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Gupta, A.K., Ng, K.W., Hudson, E.W., Lang, K.M., Davis, J.C., Nature 413, 282 (2001).CrossRefGoogle Scholar
Pan, S.H., O’Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Gupta, A.K., Ng, K.W., Hudson, E.W., Lang, K.M., Davis, J.C., Science 340, 1434 (2013).Google Scholar
Zhang, Y., Brar, V.W., Girit, C., Zettl, A., Crommie, M.F., Nat. Phys. 5, 722 (2009).CrossRefGoogle Scholar
Zheng, H., Xu, S.-Y., Bian, G., Guo, C., Chang, G., Sanchez, D.S., Belopolski, I., Lee, C.-C., Huang, S.-M., Zhang, X., Sankar, R., Alidoust, N., Chang, T.-R., Wu, F., Neupert, T., Chou, F., Jeng, H.-T., Yao, N., Bansil, A., Jia, S., Lin, H., Hasan, M.Z., ACS Nano 10, 1378 (2016).CrossRefGoogle Scholar
Fujita, K., Schmidt, A.R., Kim, E.-A., Lawler, M.J., Hai Lee, D., Davis, J.C., Eisaki, H., Uchida, S.-i., J. Phys. Soc. Jpn. 81, 011005 (2011).CrossRefGoogle Scholar
Watanabe, H., Ishikawa, I., Jpn. J. Appl. Phys. 6, 83 (1967).CrossRefGoogle Scholar
Heide, H.G., Urban, K., J. Phys. E Sci. Instrum. 5, 803 (1972).CrossRefGoogle Scholar
Matricardi, V.R., Lehmann, W.G., Kitamura, N., Silcox, J., J. Appl. Phys. 38, 1297 (1967).CrossRefGoogle Scholar
Venables, J.A., Ball, D.J., Thomas, G.J., J. Phys. E Sci. Instrum. 1, 121 (1968).CrossRefGoogle Scholar
Valdrè, U., Goringe, M.J., J. Sci. Instrum. 42, 268 (1965).CrossRefGoogle Scholar
Fujiyoshi, Y., Mizusaki, T., Morikawa, K., Yamagishi, H., Aoki, Y., Kihara, H., Harada, Y., Ultramicroscopy 38, 241 (1991).CrossRefGoogle Scholar
Harada, K., Matsuda, T., Bonevich, J., Igarashi, M., Kondo, S., Pozzi, G., Kawabe, U., Tonomura, A., Nature 360, 51 (1992).CrossRefGoogle Scholar
Mori, S., Chen, C.H., Cheong, S.W., Nature 392, 473 (1998).CrossRefGoogle Scholar
Rajeswari, J., Huang, P., Mancini, G.F., Murooka, Y., Latychevskaia, T., McGrouther, D., Cantoni, M., Baldini, E., White, J.S., Magrez, A., Giamarchi, T., Rønnow, H.M., Carbone, F., Proc. Natl. Acad. Sci. U.S.A. 112, 14212 (2015).CrossRefGoogle Scholar
Zhao, W., Li, M., Chang, C.-Z., Jiang, J., Wu, L., Liu, C., Moodera, J.S., Zhu, Y., Chan, M.H.W., Sci. Adv. 4, eaao2682 (2018).CrossRefGoogle Scholar
Savitzky, B.H., El Baggari, I., Clement, C.B., Waite, E., Goodge, B.H., Baek, D.J., Sheckelton, J.P., Pasco, C., Nair, H., Schreiber, N.J., Hoffman, J., Admasu, A.S., Kim, J., Cheong, S.-W., Bhattacharya, A., Schlom, D.G., McQueen, T.M., Hovden, R., Kourkoutis, L.F., Ultramicroscopy 191, 56 (2018).CrossRefGoogle Scholar
El Baggari, I., Savitzky, B.H., Admasu, A.S., Kim, J., Cheong, S.-W., Hovden, R., Kourkoutis, L.F., Proc. Natl. Acad. Sci. U.S.A. 115, 1445 (2018).CrossRefGoogle Scholar
Goodge, B.H., Bianco, E., Zandbergen, H.W., Kourkoutis, L.F., Microsc. Microanal. 25, 930 (2019).CrossRefGoogle Scholar
Dagotto, E., Science 309, 257 (2005).CrossRefGoogle Scholar
Webb, G.W., Marsiglio, F., Hirsch, J.E., Physica C 514, 17 (2015).CrossRefGoogle Scholar
Stewart, G.R., Adv. Phys. 66, 75 (2017).CrossRefGoogle Scholar
Coleman, P., Schofield, A.J., Nature 433, 226 (2005).CrossRefGoogle Scholar
Wieteska, A., Foutty, B., Guguchia, Z., Flicker, F., Mazel, B., Fu, L., Jia, S., Marianetti, C., van Wezel, J., Pasupathy, A., “Uniaxial Strain Tuning of Superconductivity in 2H- NbSe2,” submitted arXiv:1903.05253v1 (2019).Google Scholar
Ozdol, V.B., Gammer, C., Jin, X.G., Ercius, P., Ophus, C., Ciston, J., Minor, A.M., Appl. Phys. Lett. 106, 253107 (2015).CrossRefGoogle Scholar
Ophus, C., Microsc. Microanal. 25, 563 (2019).CrossRefGoogle Scholar
Han, Y., Nguyen, K., Cao, M., Cueva, P., Xie, S., Tate, M.W., Purohit, P., Gruner, S.M., Park, J., Muller, D.A., Nano Lett . 18, 3746 (2018).CrossRefGoogle Scholar
Müller, K., Krause, F.F., Béché, A., Schowalter, M., Galioit, V., Löffler, S., Verbeeck, J., Zweck, J., Schattschneider, P., Rosenauer, A., Nat. Commun. 5, 5653 (2014).CrossRefGoogle Scholar
Anderson, P.W., Science 235, 1196 (1987).CrossRefGoogle Scholar
Phatak, C., Petford-Long, A.K., Heinonen, O., Tanase, M., De Graef, M., Phys. Rev. B 83, 174431 (2011).CrossRefGoogle Scholar
Dusad, R., Kirschner, F.K.K., Hoke, J.C., Roberts, B.R., Eyal, A., Flicker, F., Luke, G.M., Blundell, S.J., Davis, J.C.S., Nature 571, 234 (2019).CrossRefGoogle Scholar
Baldi, A., Narayan, T.C., Koh, A.L., Dionne, J.A., Nat. Mater. 13, 1143 (2014).CrossRefGoogle Scholar
Bourrellier, R., Meuret, S., Tararan, A., Stéphan, O., Kociak, M., Tizei, L.H.G., Zobelli, A., Nano Lett. 16, 4317 (2016).CrossRefGoogle Scholar
Hudak, B.M., Song, J., Sims, H., Troparevsky, M.C., Humble, T.S., Pantelides, S.T., Snijders, P.C., Lupini, A.R., ACS Nano 12, 5873 (2018).CrossRefGoogle Scholar
Kalinin, S.V., Pennycook, S.J., MRS Bull . 42, 637 (2017).CrossRefGoogle Scholar
Ani Nersisyan, S.P., Alidoust, N., Manenti, R., Renzas, R., Bui, C.-V., Vu, K., Whyland, T., Mohan, Y., Sete, E.A., Stanwyck, S., Bestwick, A., Reagor, M., “Manufacturing Low Dissipation Superconducting Quantum Processors,” submitted arXiv:1901.08042 (2019).Google Scholar
Barkov, F., Romanenko, A., Trenikhina, Y., Grassellino, A., J. Appl. Phys. 114, 164904 (2013).CrossRefGoogle Scholar
Lagos, M.J., Batson, P.E., Nano Lett . 18, 4556 (2018).CrossRefGoogle Scholar
Goode, A.E., Porter, A.E., Ryan, M.P., McComb, D.W., Nanoscale 7, 1534 (2015).CrossRefGoogle Scholar
Jarrige, I., Bisogni, V., Zhu, Y., Leonhardt, W., Dvorak, J., Synchrotron Radiat. News 31, 7 (2018).CrossRefGoogle Scholar
Bostedt, C., Bozek, J.D., Bucksbaum, P.H., Coffee, R.N., Hastings, J.B., Huang, Z., Lee, R.W., Schorb, S., Corlett, J.N., Denes, P., Emma, P., Falcone, R.W., Schoenlein, R.W., Doumy, G., Kanter, E.P., Kraessig, B., Southworth, S., Young, L., Fang, L., Hoener, M., Berrah, N., Roedig, C., DiMauro, L.F., J. Phys. B At. Mol. Opt. Phys. 46, 164003 (2013).CrossRefGoogle Scholar