Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T08:09:00.617Z Has data issue: false hasContentIssue false

Cooperative self-assembly of porphyrins and derivatives

Published online by Cambridge University Press:  11 March 2019

Wenbo Wei
Affiliation:
Key Laboratory for Special Functional Materials, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, China; geminiow@gmail.com
Jiajie Sun
Affiliation:
Department of Physics and Electronics, Henan University, China; sunjiajie2006@hotmail.com
Hongyou Fan
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories; and Department of Chemical and Biological Engineering, The University of New Mexico, USA; hfan@sandia.gov
Get access

Abstract

There has been widespread recent interest in self-assembly and synthesis of porphyrin and its derivatives-based ordered arrays aiming to emulate natural light-harvesting processes and energy storage. However, technologies that leverage the structural advantages of individual porphyrins have not been fully realized and have been limited by available synthesis methods. This article provides general perspectives on porphyrin and derivative chemistry, and discussions on surfactant-assisted cooperative self-assembly using amphiphilic surfactants and functional porphyrins and derivatives. The cooperative self-assembly amplifies the intrinsic advantages of individual porphyrins by engineering them into well-defined one-dimensional–three-dimensional (1D–3D) nanostructures. Surfactant-assisted self-assembly of amphiphilic surfactants and porphyrins has been utilized to form well-defined “micelle-like” nanostructures. Driven by intermolecular interactions, subsequent nucleation and growth confined within these nanostructures lead to the formation of 1D–3D ordered optically and electrically active nanomaterials with structure and function on multiple length scales.

Type
Self-Assembled Porphyrin and Macrocycle Derivatives
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Denotes equal contribution.

References

Blankenship, R.E., Molecular Mechanisms of Photosynthesis (Blackwell, Oxford, 2002).10.1002/9780470758472CrossRefGoogle Scholar
Mauzerall, D.C., Clin. Dermatol. 16, 195 (1998).10.1016/S0738-081X(97)00200-9CrossRefGoogle Scholar
Dolphin, D., The Porphyrins (Academic Press, New York, 1978).Google Scholar
Drain, C.M., Smeureanua, G., Patela, S., Gong, X., Garnod, J., Arijeloyea, J., New J. Chem. 30, 1834 (2006).10.1039/b607289eCrossRefGoogle Scholar
Drain, C.M.a.C., in Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Ed. (American Scientific Press, New York, 2004), p. 593.Google Scholar
Smith, K.M., Porphyrin and Metaloporphyrin (Elsevier, Amsterdam, 1972).Google Scholar
Suslick, K.S., “Applications: Past, Present, and Future,” in The Porphyrin Handbook, Kadish, K.M., Guilard, R., Eds. (Academic Press, New York, 2000).Google Scholar
Drain, C.M., Varotto, A., Radivojevic, I., Chem. Rev. 109, 1630 (2009).10.1021/cr8002483CrossRefGoogle Scholar
Zuber, H., Cogdell, R.J., “Structure and Organization of Purple Bacterial Antenna Complexes,” in Anoxygenic Photosynthetic Bacteria, Blankenship, R.E., Madigan, M.T., Bauer, C.E., Eds. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995) pp. 315348.Google Scholar
Zuber, H., Brunisholz, R.A., “Structure and Function of Antenna Polypeptides and Chlorophyll-Protein Complexes: Principles and Variability,” in Chlorophylls, Sheer, H., Ed. (CRC Press, Boca Raton, FL, 1991) pp. 627703.Google Scholar
Wasielewski, M.R., J. Org. Chem. 71, 5051 (2006).CrossRefGoogle Scholar
George, S., Goldberg, I., Cryst. Growth Des. 6, 755 (2006).10.1021/cg050624mCrossRefGoogle Scholar
Fujimoto, K., Toyoshi, T., Doi, Y., Inouye, M., Mater. Sci. Eng. C 27, 142 (2007).10.1016/j.msec.2006.04.002CrossRefGoogle Scholar
Shmilovits, M., Vinodu, M., Goldberg, I., New J. Chem. 28, 223 (2004).10.1039/b312183fCrossRefGoogle Scholar
Balaban, M.C., Eichhofer, A., Buth, G., Hauschild, R., Szmytkowski, J.D., Kalt, H., Balaban, T.S., J. Phys. Chem. B 112, 5512 (2008).10.1021/jp801510bCrossRefGoogle Scholar
Koepf, M., Trabolsi, A., Elhabiri, M., Wytko, J.A., Paul, D., Albrecht-Gary, A.M., Weiss, J., Org. Lett. 7, 1279 (2005).10.1021/ol050033pCrossRefGoogle Scholar
Gong, X., Milic, T., Xu, C., Batteas, J.D., Drain, C.M., J. Am. Chem. Soc. 124, 14290 (2002).10.1021/ja027405zCrossRefGoogle Scholar
Wagner, R.W., Johnson, T.E., Lindsey, J.S., J. Am. Chem. Soc. 118, 11166 (1996).10.1021/ja961611nCrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, L., Zhan, N., Cao, R., Bian, K., Alarid, L., Haddad, R.E., Bai, F., Fan, H., Nano Lett . 16, 6523 (2016).10.1021/acs.nanolett.6b03135CrossRefGoogle Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett . 18, 560 (2018).10.1021/acs.nanolett.7b04701CrossRefGoogle Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., Lu, X., Bai, F., Wu, H., Haddad, R., Fan, H., Nano Lett . 14, 7175 (2014).10.1021/nl503761yCrossRefGoogle Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R., Fan, H., ACS Nano 8, 827 (2014).10.1021/nn405492dCrossRefGoogle Scholar
Barlow, D.E., Scudiero, L., Hipps, K.W., Langmuir 20, 4413 (2004).10.1021/la035879lCrossRefGoogle Scholar
Chan, Y.-H., Schuckman, A.E., Perez, L.M., Vinodu, M., Drain, C.M., Batteas, J.D., J. Phys. Chem. C 112, 6110 (2008).10.1021/jp711833kCrossRefGoogle Scholar
Scudiero, L., Hipps, K.W., Barlow, D.E., J. Phys. Chem. B 107, 2903 (2003).10.1021/jp026875cCrossRefGoogle Scholar
Goldberg, I., Chem. Commun. 10, 1243 (2005).10.1039/b416425cCrossRefGoogle Scholar
Gensch, T., Hofkens, J., Heirmann, A., Tsuda, K., Verheijen, W., Vosch, T., Christ, T., Basché, T., Müllen, K., De Schryver, F.C., Angew. Chem. Int. Ed. Engl. 38, 3752 (1999).10.1002/(SICI)1521-3773(19991216)38:24<3752::AID-ANIE3752>3.0.CO;2-Y3.0.CO;2-Y>CrossRef3.0.CO;2-Y>Google Scholar
Hofkens, J., Maus, M., Gensch, T., Vosch, T., Cotlet, M., Kohn, F., Herrmann, A., Mullen, K., De Schryver, F., J. Am. Chem. Soc. 122, 9278 (2000).10.1021/ja0012570CrossRefGoogle Scholar
Wang, Z., Medforth, C.J., Shelnutt, J.A., J. Am. Chem. Soc. 126, 16720 (2004).10.1021/ja044148kCrossRefGoogle Scholar
Wang, Z., Medforth, C.J., Shelnutt, J.A., J. Am. Chem. Soc. 126, 15954 (2004).10.1021/ja045068jCrossRefGoogle Scholar
Wang, Z., Li, Z., Medforth, C.J., Shelnutt, J.A., J. Am. Chem. Soc. 129, 2440 (2007).10.1021/ja068250oCrossRefGoogle Scholar
Hu, J.-S., Guo, , Liang, H.-P., Wan, L.-J., Jiang, L., J. Am. Chem. Soc. 127, 17090 (2005).10.1021/ja0553912CrossRefGoogle Scholar
Fan, H., Chem. Commun. 12, 1383 (2008).10.1039/B711251NCrossRefGoogle Scholar
Fan, H., Leve, E.W., Scullin, C., Gabaldon, J., Tallant, D., Bunge, S., Boyle, T., Wilson, M.C., Brinker, C.J., Nano Lett . 5, 645 (2005).10.1021/nl050017lCrossRefGoogle Scholar
Fan, H., Yang, K., Boye, D.M., Sigmon, T., Malloy, K.J., Xu, H., Lopez, G.P., Brinker, C.J., Science 304, 567 (2004).10.1126/science.1095140CrossRefGoogle Scholar
Chen, M., Pica, T., Jiang, Y.-B., Li, P., Yano, K., Liu, J.P., Datye, A.K., Fan, H., J. Am. Chem. Soc. 129, 6348 (2007).10.1021/ja069057xCrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R.E., Coker, E.N., Huang, J.Y., Rodriguez, M.A., Fan, H., Nano Lett . 11, 5196 (2011).10.1021/nl203598nCrossRefGoogle Scholar
Bai, F., Wu, H., Haddad, R.E., Sun, Z., Schmitt, S.K., Skocypec, V.R., Fan, H., Chem. Commun. 46, 4941 (2010).10.1039/c002936jCrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K., Fan, H., Nano Lett . 17, 6916 (2017).CrossRefGoogle Scholar
Wang, D., Niu, L., Qiao, Z.-Y., Cheng, D.-B., Wang, J., Zhong, Y., Bai, F., Wang, H., Fan, H., ACS Nano 12, 3796 (2018).10.1021/acsnano.8b01010CrossRefGoogle Scholar
Sun, Z., Bai, F., Wu, H., Schmitt, S.K., Boye, D.M., Fan, H., J. Am. Chem. Soc. 131, 13594 (2009).CrossRefGoogle Scholar
Sun, Z., Bai, F., Wu, H., Schmitt, S.K., Boye, D.M., Zhang, J., Wang, J., Fan, H., Chem. Eur. J. 15, 11128 (2009).CrossRefGoogle Scholar
Israelachvili, J., Intermolecular and Surface Forces (Academic Press, London, 1992).Google Scholar