Skip to main content Accessibility help

Controlled Growth of High-Temperature Superconducting Thin Films on Polycrystalline Substrates

  • David T. Shaw


Since their discovery in 1987, significant progress has been made in the fabrication of high-quality, high-temperature superconducting (HTS) thin films. Films with reproducible properties can be routinely deposited on single crystal substrates by several well-established processing techniques. Single crystal substrates, however, are not suitable for many applications because of their cost, limitations in size and shape, and lack of flexibility. Hence, a great deal of effort has been directed at the fabrication of thin films on polycrystalline rather than single crystal substrates. For example, metallic substrates are expected to be useful for the fabrication of HTS conductors for such applications as generators, motors, and superconducting magnetic energy storage (SMES) devices. For polycrystalline thin-film applications, lattice matching for epitaxial growth of thin films is no longer possible. Microstructures of these films are generally more complex than those of single crystal films, primarily because of grain boundaries. As a result, the microstructure of polycrystalline films must be carefully controlled to ensure that the critical current density is high enough for practical applications.

Happily, progress in this respect has been substantial. There have been laboratory demonstrations of techniques for controlled processing of high-quality HTS thin films on polycrystalline substrates. Even though the technology development in this area is still in its infancy, many successful processing approaches have been developed to set the stage for the eventual use of HTS thin films in power device applications.



Hide All
1.Laibowitz, R.B., MRS Bulletin XIV (1) (1989) p. 58.
2.Beasley, M.R., Proc. IEEE 77 (8) (1989) p. 1155.
3.Simon, R., Phys. Today 44 (6) (1991) p. 64.
4.Hammond, R.H. and Bormann, R., Physica C 162–164 (1989) p. 703.
5.Kwok, H.S., Shaw, D.T., Ying, Q.Y., Zheng, J.P., and Kim, H.S., “Physics of In-Situ Oxide Superconducting Film Deposition - A Review,” in Superconductivity and Applications, edited by Kwok, H.S., Kao, Y.H., and Shaw, D.T. (Plenum Press, New York, 1990) p. 47.
6.Narumi, E., Song, L.W., Yang, F., Patel, S., Kao, Y.H., and Shaw, D.T., Appl. Phys. Lett. 58 (1991) p. 1202; 56 (1990) p. 2684.
7.Narumi, E., Song, L.W., Hwa, S., Ye, J., Yang, F., Kao, Y.H., Patel, S., Shaw, D.T., and Tkaczyk, J.E., IEEE Trans. Magn. 27 (1991) p. 1648.
8.Saitoh, J., Fukutomi, M., Komori, K., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., Jpn. J. Appl. Phys. 30 (1991) p. L898.
9.Kumar, A., Ganapathi, L., Kanetkar, S.M., and Narayan, J., Appl. Phys. Lett. 69 (1991) p. 2410.
10.Saitoh, J., Fukutomi, M., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., Jpn. J. Appl. Phys. 29 (1990) p. L1117.
11.Takano, S., Yoshida, N., Okuda, S., and Nagata, M., Proc. ISTEC Workshop on Superconductors, Kagoshima, Japan (1990), p. 17.
12.Yang, F., Narumi, E., Patel, S., and Shaw, D.T., Appl. Phys. Lett. 60 (1992) p. 249.
13.Norton, D.P., Lowndes, D.H., Budai, J.D., Christen, D.K., Jones, E. C., Lay, K.W., and Tkaczyk, J.E., J. Appl. Phys. 68 (1990) p. 223.
14.Narumi, E., Lee, J., Li, C., Hosokawa, S., Patel, S., and Shaw, D.T., Appl. Phys. Lett. 59 (1991) p. 3180.
15.Mao, X.L., Berdahl, P., Russo, R.E., Liu, H.B., and Ho, J.C., Physica C 183 (1991) p. 167.
16.Iijima, Y., Tanabe, N., and Kohno, O., Proc. ISS'91 (1991); Ionics 2 (1992) p. 17.
17.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Physica C 60 (1991), p. 769; p. 1959.
18.Yamaguchi, T., Aoki, S., Sadakata, N., Kohno, O., and Osanai, H., Appl. Phys. Lett. 55 (1989) p. 1581.
19.Yamaguchi, T., Aoki, S., Sadakata, N., Kohno, O., Saji, A., and Kuroda, N., Jpn. J. Appl. Phys. 30 (1991) p. 1398.
20.Aoki, S., Yamaguchi, T., Iijima, Y., Kagawa, A., Kohno, O., Nagaya, S., and Inoue, T., Jpn. J. Appl. Phys. (to be published).
21.Ozaki, M., Harada, N., Akashita, S., and Chang, J., Proc. Sci. and Tech. of Thin Film Superconductors (Plenum Press, New York, 1988) p. 363.
22.Satoh, K., Yoshihara, M., Nakajima, M., Hara, T., Ishii, H., and Yamamoto, T., Jpn. J. Appl. Phys. 30 (1991) p. L1363.
23.Nicolet, M.A., Thin Solid Films 52 (1978) p. 415.
24.Ying, Q.Y. and Kwok, H.S., Appl. Phys. Lett. 56 (15) (1990) p. 1478.
25.Tietz, L.A. and Carter, B., J. Mater. Res. 4 (5) (1989) p. 1072.
26.Cheung, C.T. and Ruckenstein, R., J. Mater. Res. 4 (1989) p. 1.
27.Chisholm, M.F. and Pennycook, S.J., Nature 351 (1991) p. 47.
28.Ekin, L.W., Larson, T.M., Herman, A.M., Sheng, Z.Z., Togano, K., and Kumakura, H., Physica C 160 (1989) p. 489.
29.Tkaczyk, J.E., Briant, C.L., DeLuca, J.A., Hall, E.L., Karas, P.L., Lay, K.W., Narumi, E., and Shaw, D.T., J. Mater. Res. 7 (1992) p. 6.
30.Peterson, R.L. and Ekin, J.W., Physica C 157 (1989) p. 325.
31.Movchan, B.A. and Denchishin, A.V., Phys. of Metals and Metallography (USSR) 28 (1969) p. 83.
32.Dimos, D., Chaudhar, P., Mannhart, J., LeGoues, F.K., Phys. Rev. Lett. 61 (1988) p. 219.
33.Mannhart, J. and Tsuei, C.C., Z. Phys. B-Condensed Matter 77 (1989) p. 53.
34.Rhyner, J. and Blatter, G., Phys. Rev. B 40 (1989) p. 829.
35.Gross, R., Gupta, A., Olsson, E., Segmüller, A., and Koren, G., Appl. Phys. Lett. 57 (1990) p. 203.
36.Freltoft, T., Jensen, H.J., and Minnhagen, P., Solid State Commun. 78 (1991) p. 635.
37.Gao, J., Aarnink, W.A.M., Gerritsma, G.J., Rijnders, A.J.H.M., Rogalla, H., Hakkens, F., Coene, W., and Gijs, M.A.M., Physica C 177 (1991) p. 384.
38.Narumi, E. and Shaw, D.T., Kunpublished.
39.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60 (1992) p. 769.
40.Kwok, H.S. and Kim, D.H., Physica C 185–189 (1991) p. 2289.
41.Geis, M.W., Flanders, D.C., and Smith, H.I., J. Appl. Phys. 35 (1) (1979) p. 71.
42.Kanata, T., Takakura, H., and Hamakawa, Y., J. Appl. Phys. 65 (12) (1989) p. 4730.
43.Harshavardhan, K.S. and Venkatesan, T., private communication.
44.Yoshida, al., Physica C (1991) p. 185189 and 1943.
45.Hauper, J.M.E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.R., “Modification of Thin Films by Ion Bombardment During Deposition,” Chapter 4, in Ion Bombardment Modification of Surfaces, edited by Auciello, O. and Kelly, R. (Elsevier, 1984).
46.Doyle, J.P., Roy, R.A., Yee, D.S., and Cuomo, J.J., “Oriented Growth of YBCO Thin Films by Dual Ion Beam Sputtering,” presented at the American Vacuum Society National Topical Conference on HTS, Atlanta, Georgia (1988).
47.Ekin, J.W., Hart, H.R., and Gaddipati, A.R., J. Appl. Phys. 68 (1990) p. 2285.
48.Ekin, J.W., Salama, K., and Selvamanickam, V., Appl. Phys. Lett. 59 (1991) p. 360.
49.Christen, D., Dynes, R.C., Emergy, V.J., Falco, C.M., Gubser, D.U., Jin, S., Kroger, H., and Shaw, D.T., Cryogenics 32 (4) (1992) p. 338.
50.Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Iwata, K., and Mitsui, T., IEEE Trans. Magn. 27 (1991) p. 1231.
51.Haldar, P., Hoehn, J.G., Rice, J.A., and Motowidlo, L.R., Appl. Phys. Lett. 60 (1992) p. 495.
52.DeLuca, J.A., Karas, P.L., Tkaczyk, J.E., Briant, C.L., Garbauskers, M.F., and Bednarczyk, P.J., presented at the 1992 MRS Spring Meeting, San Franscisco, California, 1992 (to be published).

Controlled Growth of High-Temperature Superconducting Thin Films on Polycrystalline Substrates

  • David T. Shaw


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed