Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-05T22:50:39.763Z Has data issue: false hasContentIssue false

Challenges and Opportunities in Multifunctional Nanocomposite Structures for Aerospace Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

One important application of nanocomposites is their use in engineered structural composites. Among the wide variety of structural applications, fiber-reinforced composites for aerospace structures have some of the most demanding physical, chemical, electrical, thermal, and mechanical property requirements. Nanocomposites offer tremendous po tential to improve the properties of advanced engineered composites with modest additional weight and easy integration into current proc essing schemes. Sig nificant progress has been made in fulfilling this vision. In particular, nanocomposites have been applied at numerous locations within hierarchical composites to improve specific properties and optimize the multifunctional properties of the overall structure. Within this ar ticle, we review the status of nanocomposite incorporation into aerospace composite structures and the need for continued development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ilcewicz, L.B., Hoffman, D.J., Fawcett, A.J., Compr. Compos. Mater. 6, 87 (2000).CrossRefGoogle Scholar
2.Burton, R.L., Brown, K., Jocobi, A., J. Spacecraft Rockets 43 (3), 696 (2006).CrossRefGoogle Scholar
3.Koelle, D.E., Acta Astronautica 53, 797 (2003).CrossRefGoogle Scholar
4.Fong, H. et al., Chem. Mater. 13, 4123 (2001).CrossRefGoogle Scholar
5.Campbell, S. et al., Int. SAMPE Symp. Exhib. Proc. 48, 1124 (2003).Google Scholar
6.Thostenson, E.T., Chunyu, L., Chou, T.-W., Compos. Sci. Tech. 65, 491 (2005).CrossRefGoogle Scholar
7.Ogasawara, T., Ishida, Y., Ishikawa, T., in Proc. 11th US–Japan Conf. Composite Materials, Yonezawa, Yamagata, Japan (2004).Google Scholar
8.Jan, I.-N. et al., Ind. Eng. Chem. Res. 44, 2086 (2005).CrossRefGoogle Scholar
9.Koerner, H. et al., Chem. Mater. 17, 1990 (2005).CrossRefGoogle Scholar
10.Tyan, H.-L., Wu, C.-Y., Wei, K.H., J. Appl. Polym. Sci. 81 (7), 1742 (2001).CrossRefGoogle Scholar
11.Kim, J.-K., Hu, C., Woo, R.S.C., Sham, M.-L., Compos. Sci. Tech. 65, 805 (2005).CrossRefGoogle Scholar
12.Liang, Z. et al., Int. SAMPE Symp. Exhib. Proc. 50, 2331 (2005).Google Scholar
13.Moniruzzaman, M., Winey, K.I., Macromolecules 39 (16), 5194 (2006).CrossRefGoogle Scholar
14.Fukushima, H., Drzal, L.T., Rook, B.P., Rich, M.J., J. Therm. Anal. Calorim. 85, 235 (2006).CrossRefGoogle Scholar
15.Gojny, F.H. et al., Composites Part A 36, 1525 (2005).CrossRefGoogle Scholar
16. NanoSperse LLC product literature, www. nanosperse.com.Google Scholar
17.Veedu, V.P. et al., Nature Mater. 5, 457 (2006).CrossRefGoogle Scholar
18.Coleman, J.N., Khan, U., Blau, W.J., Gun'ko, Y.K.Carbon 44, 1624 (2006).CrossRefGoogle Scholar
19.Rinzler, A.G. et al., Appl. Phys. A 67, 29 (1998).CrossRefGoogle Scholar
20.Endo, M. et al., Nature 433, 476 (2005).CrossRefGoogle Scholar
21.Wu, Z. et al., Science 305, 1273 (2004).CrossRefGoogle Scholar
22.Hu, L., Hecht, D.S., Gruener, G., Nano Lett. 4, 2513 (2004).CrossRefGoogle Scholar
23.Fischer, J.E. et al., J. Appl. Phys., 93, 2157 (2003).CrossRefGoogle Scholar
24.Li, Y.-L., Kinloch, I.A., Windle, A.H., Science 304, 276 (2004).CrossRefGoogle Scholar
25.Kim, Y. et al., Jap. J. Appl. Phys. 42, 7629 (2003).CrossRefGoogle Scholar
26.Sreekumar, T.V. et al., Chem. Mater. 15, 175 (2003).CrossRefGoogle Scholar
27.Ago, H. et al., Adv. Mater. 11, 1281 (1999).3.0.CO;2-6>CrossRefGoogle Scholar
28.Vigolo, B. et al., Science 290, 1331 (2000).CrossRefGoogle Scholar
29.Baughman, R.H., Science 290, 1310 (2000).CrossRefGoogle ScholarPubMed
30.Vigolo, B. et al., Appl. Phys. Lett. 81, 1210 (2002).CrossRefGoogle Scholar
31.Dalton, A.B. et al., Nature 423, 703 (2003).CrossRefGoogle Scholar
32.Ericson, L.M. et al., Science 305, 1447 (2004).CrossRefGoogle Scholar
33.Kumar, S. et al., Macromolecules 35, 9039 (2002).CrossRefGoogle Scholar
34.Schelling, P.K., Shi, L., Goodson, K.E., Mater. Today 8 (6), 30 (2005).CrossRefGoogle Scholar
35.Kim, P., Shi, L., Majumdar, A., McEuen, P.L., Phys. Rev. Lett. 87, 215502 (2001).CrossRefGoogle Scholar
36.Osman, M.A., Srivastava, D., Nanotech. 12, 21 (2001).CrossRefGoogle Scholar
37.Berber, S., Kwon, Y.-K., Tomanek, D., Phys. Rev. Lett. 84, 4613 (2000).CrossRefGoogle Scholar
38.Hone, J. et al., Appl. Phys. Lett. 77, 666 (2000).CrossRefGoogle Scholar
39.Buryachenko, V.A. et al., Compos. Sci. Tech. 65, 2435 (2005); K. Lafdi, M. Matzek, Proc. 35th Int. SAMPE Tech. Conf. 35, 1 (2003).CrossRefGoogle Scholar
40.Bagchi, A., Nomura, S., Compos. Sci. Tech. 66, 1703 (2006).CrossRefGoogle Scholar
41.Choi, Y.-K. et al., Carbon 43, 2199 (2005).CrossRefGoogle Scholar
42.Wang, Z. et al., Composites Part A 35, 1225 (2004).CrossRefGoogle Scholar
43.Hansen, G., J. Adv. Mater. 38 (3), 68 (2006); G. Hansen, SAMPE J. 41 (2), 24 (2005).Google Scholar
44.K.L., Bedingfield, R.D., Leach, M.B., Alexander, Eds., Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment (NASA Reference Publication 1390, August 1996).Google Scholar
45.Barnett, D.M., Rawal, S., Rummel, K., J. Spacecraft Rockets 38 (2), 226 (2001).CrossRefGoogle Scholar
46.Gibson, T., Rice, B., Ragland, W., Silverman, E.M., Peng, H.-H., Strong, K.L., Moon, D., Int.. SAMPE Symp. Exhib. Proc. 50, 1713 (2005).Google Scholar
47.Cherington, M., Mathys, K., Aviation Space Environ. Medicine 66 (7), 687 (1995).Google Scholar
48.Gardiner, G., High-Performance Compos., 14 (2), 44 (2006).Google Scholar
49.Fisher, A., Perala, R.A., Plumer, J.A., Lightning Protection of Aircraft (Lightning Technologies, Pittsfield, MA, 1985).Google Scholar