Skip to main content Accessibility help
×
Home

Carbon nanotube transparent conducting films

  • Chunming Niu (a1)

Abstract

Carbon nanotubes (CNTs) are high aspect ratio conducting nanocylinders possessing unprecedented mechanical, thermal, optical, and electronic properties. They are ideal building blocks for use in assembling a randomly oriented, highly connected nanoporous network. When this network is deposited on top of a substrate surface as a thin film with a thickness in the range of 10–100 nm, it becomes a transparent conducting film—an ubiquitous material, currently dominated by tin-doped indium oxide (ITO). This article reviews recent progress in CNT transparent conducting films and discusses fundamental properties of CNTs important for the formation of these films, methods for CNT dispersion and assembling CNTs into transparent conducting films, properties of the CNT transparent conducting films, and issues remaining to be solved in order to make these films a commercially viable alternative to ITO.

Copyright

References

Hide All
1.Hecht, D., Hu, L.-B., Irvin, G., Adv. Mater. 78, 1 (2011).
2.Hu, L.-B., Hecht, D., Gruner, G., Chem. Rev. 110, 5790 (2010).
3.Roth, S., Park, H.J., Chem. Soc. Rev. 39, 2477 (2010).
4.Granqvist, C.G., Sol. Energy Mater. Sol. Cells 91, 1529 (2007).
5.Shibuta, D., U.S. Patent 5,853,877 (1998).
6.Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).
7.Wilder, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C., Nature 391 (6662), 59 (1998).
8.Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., Science 273, 483 (1996).
9.Coleman, J.N., Adv. Funct. Mater. 19, 3680 (2009).
10.Israelachvili, J., Intermolecular and Surface Forces (Academic Press, London, UK, 1991).
11.Yoshida, H., Sugai, T., Shinohara, H., J. Phys. Chem. C 112, 19908 (2008).
12.Niu, C.-M., “Carbon nanotube network transparent electrode for organic solar cells,” 3rd workshop on Sustainable Energy Future: Focus on Organic Photovoltaics, ORNL, 2010.
13.Iijima, S., Ichihashi, T., Nature 363, 603 (1993).
14.Bethune, D.S., Kiang, C.H., Sde Vries, M., Gorman, G., Savoy, R., Vazquez, J., Bayers, R., Nature 363, 605 (1993).
15.Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Chem. Phys. Lett. 243, 491 (1995).
16.Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E., Chem. Phys. Lett. 313, 91 (1999).
17.Howard, J.B., McKinnon, J.T., Makarovsky, Y., LaFleur, A.L., Johnson, M.E., Nature 352, 139 (1991).
18.Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E., Chem. Phys. Lett. 296, 195 (1998).
19.Qi, H., Qian, C., Liu, J., J. Chem. Mater. 18, 5691 (2006).
20.Zolyomi, V., Rusznyak, A., Kurti, J., Gali, A., Simon, F., Kuzmany, K., Szabados, A., Surjan, P.R., Phys. Status Solidi B 243, 3476 (2006).
21.Zhang, M., Fang, S.-L., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H., Science 309, 1215 (309).
22.Feng, C., Liu, K., Wu, J.-S., Liu, L., Cheng, J.-S., Zhang, Y.-Y., Sun, Y.-H., Li, Q.-Q., Fan, S.-S., Jiang, K.-L., Adv. Funct. Mater. 20, 885 (2010).
23.Jiang, K.L., Li, Q.-Q., Fan, S.-S., Nature 419, 801 (2002).
24.Niu, C.-M., Sichel, E.K., Hoch, R., Moy, D., Tennent, H., Appl. Phys. Lett. 70, 1480 (1997).
25.Fu, K.-F., Sun, Y.-P., J. Nanosci. Technol. 3 (5), 351 (2003).
26.Ham, H.T., Choi, Y.S., Chung, I.J., J. Colloid Sci. 286, 216 (2005).
27.Liu, J., Casavant, M.J., Cox, M., Walters, D.A., Boul, P., Lu, W., Rimberg, A.J., Smith, K.A., Colbert, D.T., Smalley, R.E., Chem. Phys. Lett. 303, 125 (1999).
28.Ausman, K.D., Piner, R., Lourie, O., Ruoff, R.S., Korobov, M., J. Phys. Chem. B 104, 8911 (2000).
29.Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Smalley, R.E., Tour, J.M., Chem. Commun. 193 (2001).
30.Landi, B.J., Ruf, J.H., Worman, J.J., Raffaelle, R.P., J. Phys. Chem. B 108, 17089 (2004).
31.Bergin, S.D., Sun, Z.-Y., Streich, P., Hamilton, J., Colman, J.N., J. Phys. Chem. C 114, 231 (2010).
32.Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y., Nano Lett. 3, 1379 (2003).
33.Matarredona, O., Rhoads, H., Li, Z.R., Harwell, J.H., Balzano, L., Resasco, D.E., J. Phys. Chem. B 107, 13357 (2203).
34.Tan, Y.-Q., Resasco, D.E., J. Phys. Chem. B 109, 14454 (2005).
35.Wu, Z.-C., Chen, Z.-H., Du, X., Logan, J.L., Sippel, J., Nikolou, M., Kamaras, K., Renolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., Science 305, 1273 (2004).
36.Hu, L.-B., Hecht, D.S., Grüner, G., Nano Lett. 4, 2513 (2004).
37.Meitl, M., Zhou, Y., Gaur, A., Jeon, S., Usrey, M., Strano, M., Rogers, J., Nano Lett. 4, 1643 (2004).
38.Jo, J.W., Jung, J.W., Lee, J.U., Jo, W.H., ACS Nano 4, 5382 (2010).
39.Pei, S.-F., Du, J.-H., Zheng, Y., Liu, C., Cheng, H.-M., Nanotechnology 20, 235707 (2009).
40.Spotnitz, M.E., Ryan, D., Stone, H.A., Mater. Chem. 14, 1299 (2004).
41.Sreekumar, T.V., Liu, T., Kumar, S., Ericson, L.M., Hauge, R.H., Smalley, R.E., Chem. Mater. 15, 175 (2003).
42.Haempgen, M., Duesberg, G.S., Roth, S., Appl. Surf. Sci. 252, 425 (2005).
43.Dan, B., Irvin, G.C., Pasquali, M., ACS Nano 4, 853 (2009).
44.Hu, L.-B., Hecht, D.S., Gruner, G., Nano Lett. 4, 2513 (2004).
45.Zhou, Y.-X., Hu, L.-B., Gruner, G., Appl. Phys. Lett. 88, 123109 (2006).
46.Buzicka, B., Degiorgi, L., Gaal, R., Thien-Nga, L., Bacsa, R., Salvetat, J.P., Forro, L., Phys. Rev. B 61, 2468 (2000).
47.Hecht, D.S., Heintz, A.M., Lee, R., Hu, L.-B., Moore, B., Cucksey, C., Risser, S., Nanotechnology 21, 155202 (2010).
48.Kaempgen, M., Duesberg, G.S., Roth, S., Appl. Surf. Sci. 252, 425 (2005).
49.Green, A.A., Hersam, M.C., Nano Lett. 8, 1417 (2008).
50.Parekh, B.B., Fanchini, G., Eda, G., Chhowalla, M., Appl. Phys. Lett. 90, 121913 (2007).
51.Yu, X., Rajamani, R., Stelson, K.A., Cui, T., Surf. Coat. Technol. 202, 2002 (2007).
52.Rowley, L.A., Spath, T.M., Irvin, G.C., Am. Chem. Soc. 232, 130 (2006).
53.Geng, H.Z., Kim, K.K., So, K.P., Lee, Y.S., Chang, Y., Lee, Y.H., J. Am. Chem. Soc. 129, 7758 (2007).
54.Jackson, R., Domercq, B., Jain, R., Kippelen, B., Graham, S., Adv. Funct. Mater. 18, 2548 (2008).
55.Kim, S.M., Jo, Y.W., Kim, K.K., Duong, D.L., Shin, H.-J., Han, J.H., Choi, J.-Y., Kong, J., Lee, Y.H., ACS Nano 4, 6998 (2010).
56.Hecht, D., Hu, L.-B., Gruner, G., Appl. Phys. Lett. 89, 133112 (2006).
57.Hu, L.-B., Hecht, D.S., Gruner, G., Appl. Phys. Lett. 94, 081103 (2009).
58.Sierros, K.A., Hecht, D.S., Banerjee, D.A., Morris, N.J., Hu, L., Irvin, G.C., Lee, R.S., Cairns, D.R., Thin Solid Films 518, 6977 (2010).
59.Hecht, D., Thomas, D., Ladous, C., Lam, T., Park, Y.-B., Irvin, G., Drzaic, P., J. SID 17, 943 (2009).
60.Schindler, A., Schau, P., Fruehauf, N., J. SID 17, 863 (2009).
61.Contreras, M., Barnes, T., van de Lagemaat, J., Rumbles, G., Coutts, T.J., Weeks, C., Glatkowski, P., Peltola, J., 2006 IEEE 4th World Conference on PV Energy Conversion (WCPEC-4), Waikoloa, HI, 1–12 May 2006.
62.Aquirre, C.M., Auvray, S., Pigeon, S., Izquierdo, R., Desjardins, P., Martel, R., Appl. Phys. Lett. 88, 183104 (2006).
63.Ou, E., Hu, L.-B., Raymond, G., Soo, O., Pan, J., Zheng, Z., Park, Y., Hecht, D.S., ACS Nano 3 (8), 2258 (2009).
64.Barnes, T.M., Bergeson, J.D., Tenent, R.C., Larson, B.A., Teeter, G., Jones, K.M., Blackburn, J.L., van de Lagemaat, J., Appl. Phys. Lett. 96, 243309 (2010).

Keywords

Related content

Powered by UNSILO

Carbon nanotube transparent conducting films

  • Chunming Niu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.