Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T17:51:17.327Z Has data issue: false hasContentIssue false

Atom probe tomography of nanoscale electronic materials

Published online by Cambridge University Press:  08 January 2016

D.J. Larson
Affiliation:
CAMECA Instruments, Inc., USA; david.larson@ametek.com
T.J. Prosa
Affiliation:
CAMECA Instruments, Inc., USA; ty.prosa@ametek.com
D.E. Perea
Affiliation:
Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, USA; daniel.perea@pnnl.gov
K. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Japan; kinoue@imr.tohoku.ac.jp
D. Mangelinck
Affiliation:
Institute Materials Microelectronics Nanosciences of Provence, National Center for Scientific Research/Aix-Marseille University, France; dominique.mangelinck@im2np.fr
Get access

Abstract

As the characteristic length scale of electronic devices shrinks, so does the required scale for measurement techniques to provide useful feedback during development and fabrication. The current capabilities of atom probe tomography (APT), such as detecting a low number of dopant atoms in nanoscale devices or studying diffusion effects in a nanowire (NW), make this technique important for metrology on the nanoscale. Here we review recent APT investigations applied to transistors (including regions such as gate oxide, channel, source, drain, contacts, etc.), heterogeneous dopant incorporation in NWs, and Pt-based nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Technology Roadmap for Semiconductors: Metrology Summary, http://www.itrs.net.Google Scholar
Colinge, J.-P., FinFET and Other Multi-Gate Transistors (Springer, New York, 2008).Google Scholar
Mayberry, M., “Pushing beyond the Frontiers of Technology,” in Frontiers of Charactacterization for Metrology in Nanoelectronics, Secula, E.M., Seiler, D.G., Eds. (NIST, Gaithersburg, MD 2013), p. 21.Google Scholar
Theis, T., “Metrology for a Post-CMOS World: An Overview,” in Frontiers of Charactacterization for Metrology in Nanoelectronics, Secula, E.M., Seiler, D.G., Eds. (NIST, Gaithersburg, MD 2013), p. 237.Google Scholar
Müller, E.W., Panitz, J.A., McLane, S.B., Rev. Sci. Instrum. 39, 83 (1968).Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G., Smith, G.D.W., Atom Probe Field Ion Microscopy (Oxford University Press, Oxford, 1996).Google Scholar
Gault, B., Moody, M.P., Cairney, J.M., Ringer, S.P., Atom Probe Microscopy (Springer, New York, 2012).Google Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P., Kelly, T.F., Local Electrode Tomography: A User’s Guide (Springer, New York, 2013).Google Scholar
Miller, M.K., Forbes, R.G., Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).Google Scholar
Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y., Hasegawa, M., Ultramicroscopy 109, 1479 (2009).Google Scholar
Inoue, K., Kambham, A.K., Mangelinck, D., Lawrence, D., Larson, D.J., Microsc. Today 20, 38 (2012).Google Scholar
Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y., Hasegawa, M., Appl. Phys. Lett. 95, 043502 (2009).Google Scholar
Takamizawa, H., Shimizu, Y., Inoue, K., Toyama, T., Okada, N., Kato, M., Uchida, H., Yano, F., Nishida, A., Mogami, T., Nagai, Y., Appl. Phys. Lett. 99, 133502 (2011).Google Scholar
Takamizawa, H., Shimizu, Y., Inoue, K., Toyama, T., Yano, F., Nishida, A., Mogami, T., Okada, N., Kato, M., Uchida, H., Kitamoto, K., Miyagi, T., Kato, J., Nagai, Y., Appl. Phys. Lett. 100, 253504 (2012).CrossRefGoogle Scholar
Gilbert, M., Vandervorst, W., Koelling, S., Kambham, A.K., Ultramicroscopy 111, 530 (2011).Google Scholar
Inoue, K., Takamizawa, H., Kitamoto, K., Kato, J., Miyagi, T., Nakagawa, Y., Kawasaki, N., Sugiyama, N., Hashimoto, H., Shimizu, Y., Toyama, T., Nagai, Y., Karen, A., Appl. Phys. Express 4, 116601 (2011).CrossRefGoogle Scholar
Mutas, S., Klein, C., Gerstl, S.S.A., Ultramicroscopy 111, 546 (2011).CrossRefGoogle Scholar
Martinez, E., Ronsheim, P., Barnes, J.-P., Rochat, N., Py, M., Hatzistergos, M., Renault, O., Silly, M., Sirotti, F., Bertin, F., Gambacorti, N., Microelectron. Eng. 88, 1349 (2011).Google Scholar
Izumida, T., Okano, K., Kanemura, T., Kondo, M., Inaba, S., Itoh, S., Aoki, N., Toyoshima, Y., Jpn. J. Appl. Phys. 50, 04DC15 (2011).Google Scholar
Kambham, A.K., Mody, J., Gilbert, M., Koelling, S., Vandervorst, W., Ultramicroscopy 111, 535 (2011).Google Scholar
Takamizawa, H., Shimizu, Y., Nozawa, Y., Toyama, T., Morita, H., Yabuuchi, Y., Ogura, M., Nagai, Y., Appl. Phys. Lett. 100, 093502 (2012).Google Scholar
Hatzistergos, M.S., Hopstaken, M., Kim, E., Vanamurthy, L., Shaffer, J.F., Microsc. Microanal. 19, 960 (2013).Google Scholar
Kambham, A.K., Kumar, A., Gilbert, M., Vandervorst, W., Ultramicroscopy 132, 65 (2013).Google Scholar
Kambham, A.K., Kumar, A., Florakis, A., Vandervorst, W., Nanotechnology 24, 275705 (2013).Google Scholar
Vandervorst, W., Schulze, A., Kambham, A.K., Mody, J., Gilbert, M., Eyben, P., Phys. Status Solidi C 11, 121 (2014).Google Scholar
Lavoie, C., d’Heurle, F., Detavernier, C., Cabral, C., Microelectron. Eng. 70, 144 (2003).Google Scholar
Mangelinck, D., Dai, J.Y., Pan, J., Lahiri, S.K., Appl. Phys. Lett. 75, 1736 (1999).Google Scholar
Lee, P., Pey, K., Mangelinck, D., Ding, J., Chi, D., Chan, L., IEEE Electron Device Lett. 22, 568 (2001).Google Scholar
Mangelinck, D., Hoummada, K., Portavoce, A., Perrin, C., Daineche, R., Descoins, M., Larson, D.J., Clifton, P.H., Scr. Mater. 62, 568 (2010).CrossRefGoogle Scholar
Cojocaru-Miredin, O., Mangelinck, D., Hoummada, K., Cadel, E., Blavette, D., Deconihout, B., Perrin-Pellegrino, C., Scr. Mater. 57, 373 (2007).Google Scholar
Panciera, F., Hoummada, K., Gregoire, M., Juhel, M., Bicais, N., Mangelinck, D., Appl. Phys. Lett. 99, 051911 (2011).Google Scholar
Chen, L.J., JOM 57, 24 (2005).Google Scholar
Panciera, F., Hoummada, K., Gregoire, M., Juhel, M., Mangelinck, D., Microelectron. Eng. 107, 173 (2013).Google Scholar
Perea, D.E., Hemesath, E.R., Schwalbach, E.J., Lensch-Falk, J.L., Voorhees, P.W., Lauhon, L.J., Nat. Nanotechnol. 4, 315 (2009).Google Scholar
Connell, J.G., Yoon, K., Perea, D.E., Schwalbach, E.J., Voorhees, P.W., Lauhon, L.J., Nano Lett. 13, 199 (2013).Google Scholar
Moutanabbir, O., Isheim, D., Blumtritt, H., Senz, S., Pippel, E., Seidman, D.N., Nature 496, 78 (2013).Google Scholar
Hosokawa, M., Nogi, K., Naito, M., Yokoyama, T., Nanoparticle Technology Handbook (Elsevier, Philadelphia, 2012).Google Scholar
Gordon, L.M., Cohen, M.J., Joester, D., Microsc. Microanal. 19, 952 (2013).CrossRefGoogle Scholar
Felfer, P., Benndorf, P., Masters, A., Maschmeyer, T., Cairney, J.M., Angew. Chem. Int. Ed. 53, 11190 (2014).Google Scholar
Heck, P.R., Stadermann, F.J., Isheim, D., Auciello, O., Daulton, T.L., Davis, A.M., Elam, J.W., Floss, C., Hiller, J., Larson, D.J., Lewis, J.B., Mane, A., Pellin, M.J., Savina, M.R., Seidman, D.N., Stephan, T., Meteorit. Planet. Sci. 49, 453 (2014).Google Scholar
Larson, D.J., Giddings, A.D., Wu, Y., Verheijen, M.A., Prosa, T.J., Roozeboom, F., Rice, K.P., Kessels, W.M.M., Geiser, B.P., Kelly, T.F., Ultramicroscopy 159, 420 (2015).Google Scholar
Felfer, P., Li, T., Eder, K., Galinski, H., Magyar, A.P., Bell, D.C., Smith, G.D.W., Kruse, N., Ringer, S.P., Cairney, J.M., Ultramicroscopy 159, 413 (2015).Google Scholar
George, S.M., Chem. Rev. 110, 111 (2010).Google Scholar