Skip to main content Accessibility help
×
Home

Advanced Structural Materials and Cladding

  • T. Allen, H. Burlet, R.K. Nanstad, M. Samaras and S. Ukai...

Abstract

Advanced nuclear energy systems, both fission- and fusion-based, aim to operate at higher temperatures and greater radiation exposure levels than experienced in current light water reactors. Additionally, they are envisioned to operate in coolants such as helium and sodium that allow for higher operating temperatures. Because of these unique environments, different requirements and challenges are presented for both structural materials and fuel cladding. For core and cladding applications in intermediate-temperature reactors (400–650°C), the primary candidates are 9–12Cr ferritic–martensitic steels (where the numbers represent the weight percentage of Cr in the material, i.e., 9–12 wt%) and advanced austenitic steels, adapted to maximize high-temperature strength without compromising lower temperature toughness. For very high temperature reactors (>650°C), strength and oxidation resistance are more critical. In such conditions, high-temperature metals as well as ceramics and ceramic composites are candidates. For all advanced systems operating at high pressures, performance of the pressure boundary materials (i.e., those components responsible for containing the high-pressure liquids or gases that cool the reactor) is critical to reactor safety. For some reactors, pressure vessels are anticipated to be significantly larger and thicker than those used in light water reactors. The properties through the entire thickness of these components, including the effects of radiation damage as a function of damage rate, are important. For all of these advanced systems, optimizing the microstructures of candidate materials will allow for improved radiation and high-temperature performance in nuclear applications, and advanced modeling tools provide a basis for developing optimized microstructures.

Copyright

References

Hide All
1 A Technology Roadmap for Generation IV Nuclear Energy Systems, Report No. GIF002–00 (U.S. Department of Energy, Washington, D.C., December 1, 2002); http://www.nuclear.energy.gov/genIV/documents/gen_iv_roadmap.pdf.
2 Hayner, G.O., Shaber, E.L., Mizia, R.E., Bratton, R.L., Sowder, W.K., Wright, R.N., Windes, W.E., Totemeier, T.C., Moore, K.A., “Next Generation Nuclear Plant Materials Research and Development Program Plan, Report No. INEEL/EXT-04–02347 (Idaho National Laboratory, Idaho Falls, ID, September 2004).
3 Hill, B., Argonne National Laboratory, private communication (2007).
4 Cawthorne, C., Fulton, E.J., Nature 216, 575 (1967).
5 Strassland, J.L., Powell, R.W., Chin, B.A., J. Nucl. Mater. 108–109, 299 (1982).
6 Garner, F.A., in Nuclear Materials, Frost, B.R.T., Ed. (VCH, Weinheim, Germany, 1996), pp. 420543.
7 Masuyama, F., in Advanced Heat Resistant Steel for Power Generation, Viswanathan, R., Nutting, J., Eds. (Institute of Materials, London, 1999), p. 33.
8 Busby, J., Byun, T.S., Klueh, R., Maziasz, P., Vitek, J., Natesan, K., Li, M., Wright, R., Maloy, S., Toloczko, M., Motta, A., Wirth, B.D., Odette, G.R., Allen, T., “Candidate Developmental Alloys for Improved Structural Materials for Advanced Fast Reactors,” Report ORNL/TM-2008/040 (ORNL, Oak Ridge, TN, March 2008).
9 Horsten, M., van Osch, G.E., Gelles, D.S., Hamilton, M.L., in Effects of Irradiation on Materials: 19th International Symposium, ASTM STP 1366, Hamilton, M.L., Kumar, A.S., Rosinski, S.T., Grossbeck, M.L., Eds., (ASTM, West Conshohocken, PA, 2000), p. 579.
10 Ukai, S., Ohtsuka, S., Energy Mater. 2 (1), 26 (2007).
11 Ukai, S., Fujiwara, M., J. Nucl. Mater. 307–311, 749 (2002).
12 Yoshitake, Y., Abe, Y., Akasaka, N., Ohtsuka, S., Ukai, S., Kimura, A., J. Nucl. Mater. 329–333, 342 (2004).
13 Allen, T.R., Gan, J., Cole, J.I., Ukai, S., Shutthanandan, S., Thevuthasan, S., J. Nucl. Sci. Eng. 151, 305 (2005).
14 Seki, M., Hirako, K., Kono, S., Kaito, T., Ukai, S., J. Nucl. Mater. 329–333, 1534 (2004).
15 Ukai, S., Kaito, T., Seki, M., Mayorshin, A.A., Shishalov, O.V., J. Nucl. Sci. Technol. 42 (1), 109 (2005).
16 Klueh, R.L., Hashimoto, N., Maziasz, P.J., J. Nucl. Mater. 367–370, 48 (2007).
17 Tavassoli, A.A.F., J. Nucl. Mater. 302, 73 (2002).
18 Watanabe, T., Tsurekawa, S., Acta Mater. 47, 4171 (1999).
19 Gupta, G., Was, G.S., TMS Lett. 2, 71 (2005).
20 Tan, L., Sridharan, K., Allen, T.R., Nanstad, R.K., McClintock, D.A., J. Nucl. Mater. 374, 270 (2008).
21 Schubert, F., in Proc. Symposium on Heat Exchanging Components of Gas Cooled Reactors, Dusseldorf, Germany, IWGGCR-9 (IAEA, Vienna, Austria, 1984), p. 309.
22 Burlet, H., Couturier, R., Dubiez, S., in Advanced Materials and Processes for Gas Turbines, Fuchs, G., James, A., Gabb, T., McLean, M., Harada, H., Eds. (TMS, Warrendale, PA, 2003), pp. 265273.
23 Jakobeit, W., Pfeifer, J.P., Ullrich, G., Nucl. Technol. 66, 195 (1984).
24 Furrer, D.U., Fecht, H.J., JOM 51, 14 (1999).
25 Couturier, R., Burlet, H., Terzi, S., Dubiez, S., Guetaz, L., Raisson, G., in Superalloys 2004, Green, K.A., Pollock, T.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S., Eds. (TMS, Warrendale, PA, 2004), pp. 351359.
26 Breitling, H., Dientz, W., Penkalla, H.J., in Proc. Symposium on High Temperature Metallic Materials for Gas-Cooled Reactors, Cracow, Poland, IWGGCR-18 (IAEA, Vienna, Austria, 1988), p. 91.
27 Burlet, H., Gentzbittel, J.M., Lamagnere, P., Blat, M., Renaud, D., Dubiez-Legoff, S., Pierron, D., Structural Materials for Innovative Nuclear Systems (SMINS) Workshop, Karlsruhe, Germany, 4–6 June 2007.
28 Klueh, R., Curr. Opin. Solid State Mater. Sci. 8, 239 (2004).
29 Samaras, M., Hoffelner, W., Victoria, M., J. Nucl. Mater. 371, 28 (2007).
30 Soneda, N., de la Rubia, T. Diaz, Philos. Mag. A 78, 995 (1998).
31 Hoffelner, W., Froideval, A., Pouchon, M., Chen, J., Samaras, M., Metall. Mater. Trans. A 39 (2), 212 (2008).
32 Mirebeau, I., Hennion, M., Parette, G., Phys. Rev. Lett. 53, 687 (1984).
33 Fu, C.C., Willaime, F., Ordejon, P., Phys. Rev. Lett. 92, 175503 (2004).
34 Olsson, P., Abrikosov, I.A., Vitos, L., Wallenius, J., J. Nucl. Mater. 321, 84 (2003).
35 Klaver, T.P. C., Drautz, R., Finnis, M.W., Phys. Rev. B 74, 094435 (2006).
36 Caro, A., Crowson, D.A., Caro, M., Phys. Rev. Lett. 95, 075702 (2005).
37 Caro, A., Caro, M., Klaver, P., Sadigh, B., Lopasso, E.M., Srinivasan, S.G., JOM 59, 52 (2007).
38 Klaver, T.P.C., Olsson, P., Finnis, M.W., Phys. Rev. B 76, 214110 (2007).
39 Froideval, A., Iglesias, R., Samaras, M., Schuppler, S., Nagel, P., Grolimund, D., Victoria, M., Hoffelner, W., Phys. Rev. Lett. 99, 237201 (2007).
40 Borca, C., Samaras, M., Victoria, M., Hoffelner, W., “Local structure of binary Fe–Cr alloys probed by EXAFS,” in preparation.
41 Hoffelner, W., Pouchon, M., Samaras, M., Froideval, A., Chen, J., submitted as a proceedings paper to HTR 2008, (ASME, Washington, D.C., 2008).
42 Samaras, M., Victoria, M., Mater. Today, manuscript accepted.
43 Miller, M.K., Russell, K.F., Sokolov, M.A., Nanstad, R.K., J. Nucl. Mater. 361, 248 (2007).
44 Urban, K.W., MRS Bull. 32 (11), 946 (2007).
45 Patterson, B.D., Abela, R., van der Veen, J.F., Swiss Phys. Soc. Newsl. 23, 16 (2008).
46 van der Veen, J.F., Synchrotron Radiat. Instrum. 705, 3 (2004).

Related content

Powered by UNSILO

Advanced Structural Materials and Cladding

  • T. Allen, H. Burlet, R.K. Nanstad, M. Samaras and S. Ukai...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.