Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T14:44:29.944Z Has data issue: false hasContentIssue false

Advanced manufacturing for transient electronics

Published online by Cambridge University Press:  10 February 2020

Won Bae Han
Affiliation:
KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea; life2s@korea.ac.kr
Gwan-Jin Ko
Affiliation:
KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea; wls8289@korea.ac.kr
Jeong-Woong Shin
Affiliation:
KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea; jngwngshin@korea.ac.kr
Suk-Won Hwang
Affiliation:
KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea; dupong76@korea.ac.kr
Get access

Abstract

Transient electronics represents recent technology that can partially or completely degrade, dissolve, or disintegrate under certain conditions in actively and passively controlled ways. They offer applications as eco-friendly alternatives to existing electronic components, implantable biomedical devices, and software/hardware protection systems. The degradable characteristics of materials and circuits, however, lead to various fabrication issues and difficulties in manufacturing complex systems requiring fine and elaborate design layouts and microfabrication procedures under thermally and chemically harsh conditions. Identifying advanced materials and the development of manufacturing processes compatible with established transient materials have been conducted for several years to address these issues. In this article, we focus on recent trends in manufacturing technologies for transient electronic systems, including direct fabrication of electronics on transient substrates using organic–inorganic electronic materials, screen-printing approaches particularly for conductive traces, microfabrication combined with multiple transfer-printing techniques, and large-scale, foundry-compatible technologies.

Type
Transient Electronic Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bettinger, C.J., Bao, Z., Adv. Mater. 22, 651 (2010).CrossRefGoogle Scholar
Irimia-Vladu, M., Troshin, P.A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., Bodea, M., Schwödiauer, R., Mumyatov, A., Fergus, J.W., Razumov, V.F., Sitter, H., Sariciftci, N.S., Bauer, S., Adv. Funct. Mater. 20, 4069 (2010).CrossRefGoogle Scholar
Hosseini, N.R., Lee, J.S., Adv. Funct. Mater. 25, 5586 (2015).CrossRefGoogle Scholar
Lei, T., Guan, M., Liu, J., Lin, H.-C., Pfattner, R., Shaw, L., McGuire, A.F., Huang, T.-C., Shao, L., Cheng, K.T., Tok, J.B.H., Bao, Z., Proc. Natl. Acad. Sci. U.S.A. 114, 5107 (2017).CrossRefGoogle Scholar
Hwang, S.W., Tao, H., Kim, D.H., Cheng, H., Song, J.K., Rill, E., Brenckle, M.A., Panilaitis, B., Won, S.M., Kim, Y.S., Song, Y.M., Yu, K.J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D.L., Zakin, M.R., Slepian, M.J., Huang, Y., Omenetto, F.G., Rogers, J.A., Science 337, 1640 (2012).CrossRefGoogle Scholar
Dagdeviren, C., Hwang, S.W., Su, Y., Kim, S., Cheng, H., Gur, O., Haney, R., Omenetto, F.G., Huang, Y., Rogers, J.A., Small 9, 3398 (2013).CrossRefGoogle Scholar
Kang, S.K., Hwang, S.W., Yu, S., Seo, J.H., Corbin, E.A., Shin, J., Wie, D.S., Bashir, R., Ma, Z., Rogers, J.A., Adv. Funct. Mater. 25, 1789 (2015).CrossRefGoogle Scholar
Zheng, Q., Zou, Y., Zhang, Y., Liu, Z., Shi, B., Wang, X., Jin, Y., Ouyang, H., Li, Z., Wang, Z.L., Sci. Adv. 2, e1501478 (2016).CrossRefGoogle Scholar
Gao, Y., Zhang, Y., Wang, X., Sim, K., Liu, J., Chen, J., Feng, X., Xu, H., Yu, C., Sci. Adv. 3, e1701222 (2017).CrossRefGoogle Scholar
Huang, X., Liu, Y., Hwang, S.W., Kang, S.K., Patnaik, D., Cortes, J.F., Rogers, J.A., Adv. Mater. 26, 7371 (2014).CrossRefGoogle Scholar
Lee, S., Koo, J., Kang, S.K., Park, G., Lee, Y.J., Chen, Y.Y., Lim, S.A., Lee, K.M., Rogers, J.A., Mater. Today 21, 207 (2018).CrossRefGoogle Scholar
Shou, W., Mahajan, B.K., Ludwig, B., Yu, X., Staggs, J., Huang, X., Pan, H., Adv. Mater. 29, 1700172 (2017).CrossRefGoogle Scholar
Bonacchini, G.E., Bossio, C., Greco, F., Mattoli, V., Kim, Y.H., Lanzani, G., Caironi, M., Adv. Mater. 30, e1706091 (2018).CrossRefGoogle Scholar
Hwang, S.W., Song, J.K., Huang, X., Cheng, H., Kang, S.K., Kim, B.H., Kim, J.H., Yu, S., Huang, Y., Rogers, J.A., Adv. Mater. 26, 3905 (2014).CrossRefGoogle Scholar
Jin, S.H., Shin, J., Cho, I.T., Han, S.Y., Lee, D.J., Lee, C.H., Lee, J.H., Rogers, J.A., Appl. Phys. Lett. 105, 013506 (2014).CrossRefGoogle Scholar
Yoon, J., Han, J., Choi, B., Lee, Y., Kim, Y., Park, J., Lim, M., Kang, M.H., Kim, D.H., Kim, D.M., Kim, S., Choi, S.J., ACS Nano 12, 6006 (2018).CrossRefGoogle Scholar
Jung, Y.H., Chang, T.H., Zhang, H., Yao, C., Zheng, Q., Yang, V.W., Mi, H., Kim, M., Cho, S.J., Park, D.W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S., Ma, Z., Nat. Commun. 6, 7170 (2015).CrossRefGoogle Scholar
Boutry, C.M., Beker, L., Kaizawa, Y., Vassos, C., Tran, H., Hinckley, A.C., Pfattner, R., Niu, S., Li, J., Claverie, J., Wang, Z., Chang, J., Fox, P.M., Bao, Z., Nat. Biomed. Eng. 3, 47 (2019).CrossRefGoogle Scholar
Hwang, S.W., Kim, D.H., Tao, H., Kim, T.i., Kim, S., Yu, K.J., Panilaitis, B., Jeong, J.W., Song, J.K., Omenetto, F.G., Rogers, J.A., Adv. Funct. Mater. 23, 4087 (2013).CrossRefGoogle Scholar
Chang, J.K., Fang, H., Bower, C.A., Song, E., Yu, X., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 114, E5522 (2017).CrossRefGoogle Scholar
Chang, J.K., Chang, H.P., Guo, Q., Koo, J., Wu, C.I., Rogers, J.A., Adv. Mater. 30, 1704955 (2018).CrossRefGoogle Scholar
Yin, L., Bozler, C., Harburg, D.V., Omenetto, F., Rogers, J.A., Appl. Phys. Lett. 106, 014105 (2015).CrossRefGoogle Scholar
Fang, H., Zhao, J., Yu, K.J., Song, E., Farimani, A.B., Chiang, C.H., Jin, X., Xue, Y., Xu, D., Du, W., Seo, K.J., Zhong, Y., Yang, Z., Won, S.M., Fang, G., Choi, S.W., Chaudhuri, S., Huang, Y., Alam, M.A., Viventi, J., Aluru, N.R., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 113, 11682 (2016).CrossRefGoogle Scholar
Shin, J., Liu, Z., Bai, W., Liu, Y., Yan, Y., Xue, Y., Kandela, I., Pezhouh, M., MacEwan, M.R., Huang, Y., Ray, W.Z., Zhou, W., Rogers, J.A., Sci. Adv. 5, eaaw1899 (2019).CrossRefGoogle Scholar
Yin, L., Huang, X., Xu, H., Zhang, Y., Lam, J., Cheng, J., Rogers, J.A., Adv. Mater. 26, 3879 (2014).CrossRefGoogle Scholar
Chen, C., Karshalev, E., Li, J., Soto, F., Castillo, R., Campos, I., Mou, F., Guan, J., Wang, J., ACS Nano 10, 10389 (2016).CrossRefGoogle Scholar