Skip to main content Accessibility help
×
Home

Advanced lightweight materials and manufacturing processes for automotive applications

  • Alan I. Taub (a1) and Alan A. Luo (a2)

Abstract

The global automotive industry is facing challenges in several key areas, including energy, emissions, safety, and affordability. Lightweighting is one of the key strategies used to address these challenges. Maximizing the weight reduction (i.e., minimizing vehicle weight) requires a systems-engineering design optimization and iteration process that combines material properties and manufacturing processes to meet product requirements at the lowest mass and/or cost. Advanced high-strength steels, aluminum and magnesium alloys, and carbon-fiber-reinforced polymers have emerged as important materials for automotive lightweighting. This article presents examples of how coupling materials science with innovative manufacturing processes can provide lightweight solutions in automotive engineering.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Advanced lightweight materials and manufacturing processes for automotive applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Advanced lightweight materials and manufacturing processes for automotive applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Advanced lightweight materials and manufacturing processes for automotive applications
      Available formats
      ×

Copyright

References

Hide All
1. Folsom, R.B., “Henry Ford,” in The Automobile Industry, 1896–1920, May, G.S., Ed. (Facts on File, New York, 1990), pp. 192222.
2. Ward’s Automotive International Yearbook (Ward’s Communications, Detroit, 1955), p. 29.
3. “The Year 1955 from the People History,” http://www.thepeoplehistory.com/1955.html (accessed September 2015).
4. Kesslerjan, A.M., “2014 Auto Sales Jump in U.S., Even with Recalls,” New York Times (January 5, 2015).
5. Taub, A.I., Krajewski, P.E., Luo, A.A., Owens, J.N., JOM 59 (2), 48 (2007).
6. Brooke, L., Automot. Eng. Int. 2 (5), 18 (2015).
7. Joost, W.J., JOM 64 (9), 1032 (2012).
8. “2010 Annual Progress Report: Lightweighting Material” (US Department of Energy, Washington, DC, 2010), http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/2010_lightweighting_materials.pdf (accessed September 2015).
9. “Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2014: Executive Summary” (EPA Publication 420-S-14-001, October 2014), http://www.epa.gov/fueleconomy/fetrends/1975-2014/420s14001.pdf (accessed September 2015).
10. Verbrugge, M.W., Lee, T.M., Krajewski, P.E., Sachdev, A.K., Bjelkengren, C., Roth, R., Kirchain, R., Mater. Sci. Forum 618619, 411 (2009).
11. “Weight Reduction with Aluminum: Part of All Cost-Effective Fuel Economy Improvement Strategies” (Scenaria, Plymouth, MI, 2012), http://www.drivealuminum.org/research-resources/PDF/Research/2012/2012-Scenaria-Study%20.pdf (accessed September 2015).
12. “2015 North American Light Vehicle Aluminum Content Study: Executive Summary” (Ducker Worldwide, Troy, MI, 2014), http://www.drivealuminum.org/research-resources/PDF/Research/2014/2014-ducker-report (accessed September 2015).
13. Joost, W., “Energy, Materials, and Vehicle Weight Reduction” (US Department of Energy, Washington, DC, 2015), http://www.nist.gov/mml/acmd/structural_materials/upload/Joost-W-DOE-VTP-NIST-ASP-AHSS-Workshop-R03.pdf (accessed September 2015).
14. De Moor, E., Gibbs, P.J., Speer, J.G., Matlock, D.K., Schroth, J.G., AIST Trans. 7 (11), 133 (2010).
15. Gibbs, P.J., De Moor, E., Merwin, M.J., Clausen, B., Speer, J.G., Matlock, D.K., Metall. Mater. Trans. A 42, 12, 3691 (2011).
16. Matlock, D.K., Speer, J.G., De Moor, E., Gibbs, P.J., “Recent Developments in Advanced High Strength Sheet Steels for Automotive Applications: An Overview,” presented at the International Iron & Steel Symposium, Karabük, Türkiye, April 2–4, 2012.
17. Rashid, M.S., Rao, B.V.N., Conf. Proc. Fundamen. Dual-Phase Steels Symp., Kot, R.A., Bramfitt, B.L., Eds. (TMS-AIME, Warrendale, PA, 1981), pp. 249264.
18. Kot, R.A., Morris, J.W., Eds., Structure and Properties of Dual-Phase Steels (TMS-AIME, Warrendale, PA, 1979).
19. Kot, R.A., Bramfitt, B.L., Eds., Conf. Proc. Fundamen. Dual-Phase Steels Symp. (TMS-AIME, Warrendale, PA, 1981).
20. Davenport, A.T., Ed., Formable HSLA and Dual-Phase Steels (TMS-AIME, Warrendale, PA, 1979).
21. Marder, A.R., in Formable HSLA and Dual-Phase Steels, Davenport, A.T., Ed. (TMS-AIME, Warrendale, PA, 1979), p. 87.
22. Matlock, D.K., Speer, J.G., “Design Considerations for the Next Generation of Advanced High Strength Sheet Steels,” Proc. 3rd Int. Conf. Struct. Steels, Lee, H.C., Ed. (Korean Institute of Metals and Materials, Seoul, Korea, 2006), pp. 774781.
23. Keeler, S., Kimchi, M., Eds., Advanced High-Strength Steel (AHSS) Application Guidelines Version 5.0 (WorldAutoSteel, Middletown, OH, 2014), www.worldautosteel.org/projects/advanced-high-strength-steel-application-guidelines (accessed September 2015).
24. Brooke, L., Evans, H., Automot. Eng. Int. 117, 16 (2009).
25. Kim, S.K., Kim, G., Chin, K.-G., “Development of High Manganese TWIP Steel with 980MPa Tensile Strength,” Proc. Int. Conf. New Dev. Adv. High-Strength Sheet Steels (AIST, Orlando, FL, 2008), p. 249.
26. Matlock, D.K., Speer, J.G., Mater. Manuf. Proc. 25 (1), 7 (2010).
27. Kaufman, L., Bernstein, H., Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic Press, New York, 1970).
28. Chang, Y.A., Chen, S., Zhang, F., Yan, X., Xie, F., Schmid-Fetzer, R., Oates, W.A., Prog. Mater. Sci. 49, 313 (2004).
29. Chang, Y.A., Yang, Y., in Methods for Phase Diagram Determination, Zhao, J.-C., Ed. (Elsevier, Oxford, UK, 2007), chap. 8, pp. 273291.
30. Thermo-Calc Software, http://www.thermocalc.com (accessed September 2015).
31. FactSage 6.4, http://www.factsage.com (accessed September 2015).
32. CompuTherm LLC, http://www.computherm.com (accessed September 2015).
33. Liu, Z.K., J. Phase Equilib. Diffus. 30 (5), 517 (2009).
34. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C., JOM 65, 1501 (2013).
35. Luo, A.A., “Application of Computational Thermodynamics and CALPHAD in Magnesium Alloy Development,” Proc. 2nd World Congr. Integr. Comput. Mater. Eng., Li, M., Campbell, C., Thornton, K., Holm, E., Gumbsch, P., Eds. (TMS, Warrendale, PA, 2013), pp. 38.
36. Mercer, W.E. II, “Magnesium Die Cast Alloys for Elevated Temperature Applications” (SAE Tech. Pap. 900788, SAE International, Warrendale, PA, 1990).
37. Bakke, P., Westengen, H., in Magnesium Technology 2005, Neelameggham, N.R., Ed. (TMS, Warrendale, PA, 2005), p. 291.
38. Porter, D.A., Easterling, K.E., Sherif, M.Y., Phase Transformations in Metals and Alloys, 3rd ed. (Taylor & Francis/CRC Press, Boca Raton, FL, 2009).
39. Aragones, J., Goundan, K., Kolp, S., Osborne, R., Ouimet, L., Pinch, W., “Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember” (SAE Tech. Pap. 2005-01-0340, SAE International, Warrendale, PA, 2005).
40. Triantos, D., Michaels, M., “Design and Fabrication of an Aluminum Engine Cradle for a General Motors Vehicle” (SAE Tech. Pap. 1999-01-0659, SAE International, Warrendale, PA, 1999).
41. Borns, R., Whitacre, D., “Optimizing Designs of Aluminum Suspension Components using an Integrated Approach” (SAE Tech. Pap. 2005-01-1387, SAE International, Warrendale, PA, 2005).
42. Parsons, W.J., “Body Structure Light-Weighting at Cadillac,” presented at Great Designs in Steel 2013, Livonia, MI, May 1, 2013.
43. Vinarcik, E.J., High Integrity Die Casting Processes (Wiley, New York, 2003).
44. Brown, Z., Szymanowski, B., Musser, M., Saha, D., Seaver, S., Proc. Int. Die Casting Congr. Expo. 2007 (NADCA, Arlington Heights, IL, 2007), p. 154.
45. Casarotto, F., Franke, A.J., Franke, R., in Advanced Materials in Automotive Engineering, Rowe, J., Ed. (Woodhead Publishing, Cambridge, UK, 2012), p. 109.
46. Parsons, W.J., “Light-Weighting the 2013 Cadillac ATS Body Structure,” presented at Great Designs in Steel 2012, Livonia, MI, May 16, 2012.
47. Apelian, D., Aluminum Cast Alloys: Enabling Tools for Improved Performance (NADCA, Wheeling, IL, 2009).
48. Taylor, J.A., Procedia Mater. Sci. 1, 19 (2012).
49. Dinnis, C.M., Taylor, J.A., Dahle, A.K., Metall. Mater. Trans. A 37, 3283 (2006).
50. Ceschini, L., Boromei, I., Morri, A., Seifeddine, S., Svensson, I.L., J. Mater. Proc. Technol. 209, 5669 (2009).
51. Cinkilic, E., Sun, W., Klarner, A.D., Luo, A.A., “Use of CALPHAD Modeling in Controlling Microstructure of Cast Aluminum Alloys,” presented at the 119th Metal Casting Conference, Columbus, OH, April 20–23, 2015, paper 15–044.
52. Red, C., “Aviation Outlook: Fuel Pricing Ignites Demand for Composites in Commercial Transports,” CompositesWorld (July 2008).
53. Kaufman, M., “Cost/Weight Optimization of Aircraft Structures,” thesis, KTH Royal Institute of Technology, Stockholm, Sweden (2008).
54. Materials Research to Meet 21st Century Defense Needs (National Academies Press, Washington, DC, 2003).
55. Das, S., “The Cost of Automotive Polymer Composites: A Review and Assessment of DOE’s Lightweight Materials Composites Research” (Report ORNL/TM-2000/283, Oak Ridge National Laboratory, Oak Ridge, TN, 2001).
56. Park, S.-J., Carbon Fibers, Springer Series in Materials Science (Springer, Dordrecht, The Netherlands, 2015), vol. 210.
57. Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., Griffith, W., Carbon 40, 2913 (2002).
58. Baker, D.A., Gallego, N.C., Baker, F.S., J. Appl. Polym. Sci. 124, 227 (2012).
59. Braun, J.L., Holtman, K.M., Kadla, J.F., Carbon 43, 385 (2005).
60. Dong, X., Lu, C., Zhou, P., Zhang, S., Wang, L., Li, D., RSC Adv. 5, 42259 (2015).
61. Miller, B., Plast. World 54 (10), 39 (1996).
62. Smith, R.L., “High-Volume SMC Exterior Body Panels—An Evolution in Productivity” (SAE Tech. Pap. 880360, SAE International, Warrendale, PA, 1988).
63. Wood, S., Mod. Plast. 61 (10), 48 (1984).
64. Wood, S., Mod. Plast. 61 (2), 46 (1984).
65. Fuchs, E.R.H., Field, F.R., Roth, R., Kirchain, R.E., Compos. Sci. Technol. 68, 1989 (2008).
66. Gibson, R.F., Compos. Struct. 92, 2793 (2010).
67. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., van Vuure, A.W., Gorbatikh, L., Moldenaers, P., Verpoest, I., Carbon 47, 2914 (2009).
68. Díez-Pascual, A.M., Naffakh, M., Marco, C., Gómez-Fatou, M.A., Ellis, G.J., Curr. Opin. Solid State Mater. Sci. 18, 62 (2014).
69. “National Network for Manufacturing Innovation: A Preliminary Design” (National Science and Technology Council, Washington, DC, January 2013).
70. Lightweight Innovations for Tomorrow, http://www.lift.technology (accessed August 2015).
71. Institute for Advanced Composites Manufacturing Innovation, http://www.iacmi.org (accessed August 2015).
72. “Making Cars that are Lightweight and Crash-Safe,” Fraunhofer Research News (August 2013), Topic 5.

Keywords

Related content

Powered by UNSILO

Advanced lightweight materials and manufacturing processes for automotive applications

  • Alan I. Taub (a1) and Alan A. Luo (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.